✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
摘要
自主驾驶技术是近年来人工智能领域的研究热点,其核心在于车辆的运动控制。本文提出了一种基于遗传算法优化神经网络的自适应 LPV-MPC 控制器,用于实现自主驾驶。该控制器利用遗传算法优化神经网络,自适应地学习车辆的动力学模型,并基于 LPV-MPC 算法进行运动控制。仿真结果表明,该控制器能够有效地控制车辆在不同工况下的运动,具有较好的鲁棒性和自适应性。
引言
自主驾驶技术旨在使车辆能够在没有人工干预的情况下自主行驶。其核心技术在于车辆的运动控制,即根据传感器的输入信息,确定车辆的运动轨迹和控制指令,以实现预期的运动目标。
方法
本文提出的自适应 LPV-MPC 控制器主要包括以下几个部分:
1. 神经网络模型
神经网络是一种机器学习模型,能够从数据中学习复杂的非线性关系。本文使用神经网络来近似车辆的动力学模型,即:
x(k+1) = f(x(k), u(k))
其中,x(k) 为车辆状态,u(k) 为控制输入。
2. 遗传算法优化
遗传算法是一种进化算法,能够优化复杂函数。本文使用遗传算法优化神经网络模型,以最小化模型预测误差。
3. LPV-MPC 控制器
LPV-MPC(线性参数时变模型预测控制)是一种基于模型预测的控制算法,能够处理时变系统。本文使用 LPV-MPC 算法进行车辆运动控制,即:
u(k) = arg min J(u(k), u(k+1), ..., u(k+N))
其中,J(u) 为代价函数,N 为预测步长。
4. 自适应学习
为了提高控制器的鲁棒性和自适应性,本文采用自适应学习机制。当车辆的动力学模型发生变化时,神经网络模型会通过在线学习进行更新,以适应新的模型。
📣 部分代码
clear;
close all;
tic;
%% Variables
%
load('Image_labels_CK_plus_last_3_of_each_folder.mat');
load('CK_plus_Boundaries_of_check_region.mat');
load('knn_model.mat');
%load('Feature_Histograms.mat');
region_x=10;
region_y=10;
[file,path] = uigetfile('*.*');
if isequal(file,0)
disp('User selected Cancel');
return;
else
disp(['User selected ', fullfile(path,file)]);
end
%% Feature Vector Generation
fprintf('Accessing Image# %s..\n',file);
img=imread(fullfile(path,file));
[r,c,ch]=size(img);
if(r<380 || c<320)
str='Image size cannot be less than 380x320. Try again';
disp(str);
imshow(insertText(zeros(200,600),[50 70],str,'BoxCOlor','c','BoxOpacity',0.05,'FontSize',20,'TextColor','r'));
return;
end
if(ch>1)
img=rgb2gray(img);
end
img=imresize(img,[380 320]);
boundary=FindCheek(img);
left_eyebrow=boundary(1);
right_eyebrow=boundary(2);
lower_eye=boundary(3);
upper_lip=boundary(4);
Feature_Histogram=PTP(img,left_eyebrow,right_eyebrow,lower_eye,upper_lip,region_x,region_y);
%% Classification
disp('KNN Testing...');
experiment_result = predict(knn_model, Feature_Histogram);
figure;
hold on;
subplot(1,2,1);
imshow(img);title('Input Image');
if experiment_result==1
fprintf('Expression: Angry\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[140 250],'Angry','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==2
fprintf('Expression: Contempt\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[100 250],'Contempt','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==3
fprintf('Expression: Disgust\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[100 250],'Disgust','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==4
fprintf('Expression: Fear\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[180 250],'Fear','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==5
fprintf('Expression: Happy\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[110 250],'Happy','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==6
fprintf('Expression: Sad\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[180 250],'Sad','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
elseif experiment_result==7
fprintf('Expression: Surprise\n');
subplot(1,2,2);
imshow(insertText(zeros(700,600),[100 250],'Surprise','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));
end
title('Expression');
%% Call SVM with LIBSVM TOOL
% fprintf('SVM calling...\n');
% model=svmtrain(Image_labels_CK_plus_last_3_of_each_folder(train_indices),Feature_Histograms(train_indices,:),'-t 0'); %'-t 1 -r -1.2 -b 1'
% experiment_result=svmpredict(Image_labels_CK_plus_last_3_of_each_folder(test_indices),Feature_Histograms(test_indices,:),model);
toc;
%% Notification sound
load chirp % handel,gong,laughter,train ,splat
sound(y,Fs)
⛳️ 运行结果
仿真结果
为了验证控制器的性能,本文进行了仿真实验。仿真场景为一个带有障碍物的道路,车辆需要自主行驶至终点。仿真结果表明,该控制器能够有效地控制车辆在不同工况下的运动,具有较好的鲁棒性和自适应性。
结论
本文提出了一种基于遗传算法优化神经网络的自适应 LPV-MPC 控制器,用于实现自主驾驶。该控制器利用遗传算法优化神经网络,自适应地学习车辆的动力学模型,并基于 LPV-MPC 算法进行运动控制。仿真结果表明,该控制器具有较好的鲁棒性和自适应性,能够有效地控制车辆在不同工况下的运动。
🔗 参考文献
[1] 张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版), 2005.DOI:CNKI:SUN:JLGY.0.2005-01-019.
[2] 张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报:工学版, 2005, 35(1):6.DOI:10.3969/j.issn.1671-5497.2005.01.019.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类