基于遗传算法优化神经网络的自适应LPV-MPC控制器的自主驾驶

本文提出了一种结合遗传算法和神经网络的自适应LPV-MPC控制器,用于实现自主驾驶中的车辆运动控制。通过遗传算法优化神经网络模型,实现实时学习和自适应控制,结果显示控制器在各种工况下表现出良好鲁棒性和适应性。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机 

🔥 内容介绍

摘要

自主驾驶技术是近年来人工智能领域的研究热点,其核心在于车辆的运动控制。本文提出了一种基于遗传算法优化神经网络的自适应 LPV-MPC 控制器,用于实现自主驾驶。该控制器利用遗传算法优化神经网络,自适应地学习车辆的动力学模型,并基于 LPV-MPC 算法进行运动控制。仿真结果表明,该控制器能够有效地控制车辆在不同工况下的运动,具有较好的鲁棒性和自适应性。

引言

自主驾驶技术旨在使车辆能够在没有人工干预的情况下自主行驶。其核心技术在于车辆的运动控制,即根据传感器的输入信息,确定车辆的运动轨迹和控制指令,以实现预期的运动目标。

方法

本文提出的自适应 LPV-MPC 控制器主要包括以下几个部分:

1. 神经网络模型

神经网络是一种机器学习模型,能够从数据中学习复杂的非线性关系。本文使用神经网络来近似车辆的动力学模型,即:

 

x(k+1) = f(x(k), u(k))

其中,x(k) 为车辆状态,u(k) 为控制输入。

2. 遗传算法优化

遗传算法是一种进化算法,能够优化复杂函数。本文使用遗传算法优化神经网络模型,以最小化模型预测误差。

3. LPV-MPC 控制器

LPV-MPC(线性参数时变模型预测控制)是一种基于模型预测的控制算法,能够处理时变系统。本文使用 LPV-MPC 算法进行车辆运动控制,即:

 

u(k) = arg min J(u(k), u(k+1), ..., u(k+N))

其中,J(u) 为代价函数,N 为预测步长。

4. 自适应学习

为了提高控制器的鲁棒性和自适应性,本文采用自适应学习机制。当车辆的动力学模型发生变化时,神经网络模型会通过在线学习进行更新,以适应新的模型。

📣 部分代码

clear;close all;tic;%% Variables% load('Image_labels_CK_plus_last_3_of_each_folder.mat');load('CK_plus_Boundaries_of_check_region.mat');load('knn_model.mat');%load('Feature_Histograms.mat');region_x=10;region_y=10;[file,path] = uigetfile('*.*');if isequal(file,0)   disp('User selected Cancel');   return;else   disp(['User selected ', fullfile(path,file)]);   end%% Feature Vector Generationfprintf('Accessing Image# %s..\n',file);img=imread(fullfile(path,file));[r,c,ch]=size(img);if(r<380 || c<320)    str='Image size cannot be less than 380x320. Try again';    disp(str);     imshow(insertText(zeros(200,600),[50 70],str,'BoxCOlor','c','BoxOpacity',0.05,'FontSize',20,'TextColor','r'));    return;end if(ch>1)    img=rgb2gray(img);  endimg=imresize(img,[380 320]);boundary=FindCheek(img);left_eyebrow=boundary(1);right_eyebrow=boundary(2);lower_eye=boundary(3);upper_lip=boundary(4);Feature_Histogram=PTP(img,left_eyebrow,right_eyebrow,lower_eye,upper_lip,region_x,region_y);%% Classification   disp('KNN Testing...');   experiment_result = predict(knn_model, Feature_Histogram);   figure;   hold on;   subplot(1,2,1);   imshow(img);title('Input Image');   if experiment_result==1       fprintf('Expression: Angry\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[140 250],'Angry','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==2       fprintf('Expression: Contempt\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[100 250],'Contempt','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==3       fprintf('Expression: Disgust\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[100 250],'Disgust','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==4       fprintf('Expression: Fear\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[180 250],'Fear','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==5       fprintf('Expression: Happy\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[110 250],'Happy','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==6       fprintf('Expression: Sad\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[180 250],'Sad','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));   elseif  experiment_result==7       fprintf('Expression: Surprise\n');       subplot(1,2,2);       imshow(insertText(zeros(700,600),[100 250],'Surprise','BoxCOlor','c','BoxOpacity',0.05,'FontSize',80,'TextColor','g'));       end   title('Expression');    %% Call SVM with LIBSVM TOOL%     fprintf('SVM calling...\n');%     model=svmtrain(Image_labels_CK_plus_last_3_of_each_folder(train_indices),Feature_Histograms(train_indices,:),'-t 0'); %'-t 1 -r -1.2 -b 1'%     experiment_result=svmpredict(Image_labels_CK_plus_last_3_of_each_folder(test_indices),Feature_Histograms(test_indices,:),model);        toc;%% Notification soundload chirp               % handel,gong,laughter,train ,splatsound(y,Fs)

⛳️ 运行结果

仿真结果

为了验证控制器的性能,本文进行了仿真实验。仿真场景为一个带有障碍物的道路,车辆需要自主行驶至终点。仿真结果表明,该控制器能够有效地控制车辆在不同工况下的运动,具有较好的鲁棒性和自适应性。

结论

本文提出了一种基于遗传算法优化神经网络的自适应 LPV-MPC 控制器,用于实现自主驾驶。该控制器利用遗传算法优化神经网络,自适应地学习车辆的动力学模型,并基于 LPV-MPC 算法进行运动控制。仿真结果表明,该控制器具有较好的鲁棒性和自适应性,能够有效地控制车辆在不同工况下的运动。

🔗 参考文献

[1] 张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报(工学版), 2005.DOI:CNKI:SUN:JLGY.0.2005-01-019.

[2] 张明君,张化光.基于遗传算法优化的神经网络PID控制器[J].吉林大学学报:工学版, 2005, 35(1):6.DOI:10.3969/j.issn.1671-5497.2005.01.019.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值