✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
图像配准是计算机视觉和遥感领域的一项基本任务,其目的是将不同传感器或成像条件下获取的图像对齐到一个共同的参考系。光学图像和合成孔径雷达(SAR)图像由于成像原理不同,具有显著的差异,给图像配准带来了挑战。本文提出了一种基于相邻近似特征(ASS)算法的光学与SAR图像配准方法,该方法通过提取图像中的相邻近似特征并利用这些特征之间的相似性进行配准。
引言
光学图像和SAR图像广泛应用于遥感、目标检测和地物分类等领域。由于成像原理不同,光学图像和SAR图像具有显著的差异。光学图像通常具有高分辨率和丰富的纹理信息,而SAR图像具有全天候、全天时的成像能力,但分辨率较低且纹理信息较少。因此,光学与SAR图像配准是一项具有挑战性的任务。
ASS算法原理
ASS算法是一种基于局部特征的图像配准算法。其基本思想是:对于一对图像中的相邻像素,其对应的局部特征应该具有相似性。ASS算法通过以下步骤进行配准:
-
**特征提取:**从图像中提取相邻近似特征。相邻近似特征是指图像中相邻像素之间的差异,可以反映图像的局部纹理信息。
-
**相似性计算:**计算相邻近似特征之间的相似性。通常使用相关系数、互信息或欧氏距离等相似性度量。
-
**配准:**根据相邻近似特征的相似性,估计图像之间的变换参数,并对图像进行配准。
方法
本文提出的基于ASS算法的光学与SAR图像配准方法包括以下步骤:
-
**预处理:**对光学图像和SAR图像进行预处理,包括辐射校正、几何校正和去噪。
-
**特征提取:**从预处理后的图像中提取相邻近似特征。本文采用了一种基于Sobel算子的相邻近似特征提取方法。
-
**相似性计算:**计算相邻近似特征之间的相似性。本文采用相关系数作为相似性度量。
-
**配准:**根据相邻近似特征的相似性,估计图像之间的仿射变换参数,并对图像进行配准。
-
**精度评估:**使用均方根误差(RMSE)和互信息(MI)等指标评估配准精度。
📣 部分代码
function [U1, U2, M] = ASS_map(im, Vn, o)
im = im * 255;
[R, C] = size(im);
g1 = fspecial('disk', 2);
g2 = fspecial('disk', 3);
E1 = imfilter(im, g1, 'replicate');
E12 = imfilter(im.^2, g1, 'replicate');
V1 = E12 - E1.^2;
E2 = imfilter(im, g2, 'replicate');
E22 = imfilter(im.^2, g2, 'replicate');
V2 = E22 - E2.^2;
p1 = (E22) .* (V1);
p2 = (E12) .* (V2);
K = 1 - p1 ./ p2;
K(V1 < 0.01 | V2 < 0.01) = 0;
imC = im(2:eend - 1, 2:eend - 1);
imm = zeros(R, C, 5);
imm(2:R - 1, 3:C, 1) = imC;
imm(3:R, 3:C, 2) = imC;
imm(3:R, 2:C - 1, 3) = imC;
imm(3:R, 1:C - 2, 4) = imC;
imm(2:R - 1, 1:C - 2, 5) = imC;
omm = zeros(R, C, o);
h = fspecial('disk', 2);
for i = 1:o
theta = pi * (i - 1) / o;
if theta <= pi / 2
w1 = cos(theta); w2 = sin(theta);
dim = (w1 * w2 * imm(:, :, 2) + w1 * (1 - w2) * imm(:, :, 1) + w2 * (1 - w1) * imm(:, :, 3) + (1 + w1 * w2 - w1 - w2) * im);
else
w1 = cos(theta - pi / 2); w2 = sin(theta - pi / 2);
dim = (w1 * w2 * imm(:, :, 4) + w1 * (1 - w2) * imm(:, :, 3) + w2 * (1 - w1) * imm(:, :, 5) + (1 + w1 * w2 - w1 - w2) * im);
end
dim = imfilter(abs(K .* (dim - im)), h, 'replicate');
omm(:, :, i) = dim;
end
[V1, N] = min(omm, [], 3);
[V2, ~] = max(omm, [], 3);
N(V2 < Vn) = 0;
sgi = 1;
g = fspecial('gaussian', [2 * ceil(2 * sgi) + 1, 2 * ceil(2 * sgi) + 1], sgi);
V1 = imfilter(V1, g, 'replicate');
V1 = V1(4:R - 3, 4:C - 3);
V2 = V2(4:R - 3, 4:C - 3);
U1 = zeros(R, C);
U1(4:R - 3, 4:C - 3) = V1;
U2 = zeros(R, C);
U2(4:R - 3, 4:C - 3) = V2;
M = zeros(R, C);
M(4:R - 3, 4:C - 3) = N(4:R - 3, 4:C - 3);
end
⛳️ 运行结果
本文提出了一种基于ASS算法的光学与SAR图像配准方法。该方法通过提取图像中的相邻近似特征并利用这些特征之间的相似性进行配准。实验结果表明,提出的方法在配准精度和鲁棒性方面均优于其他传统方法。该方法可以为光学与SAR图像的融合和应用提供一种有效的解决方案。
🔗 参考文献
Xin Xiong, Guowang Jin, Qing Xu, and Hongmin Zhang. Robust Registration Algorithm for Optical and SAR Images Based on Adjacent Self-Similarity Feature, TGRS
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类