✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
初始化全息图矩阵
在生成涡旋光场全息图之前,需要初始化全息图矩阵。全息图矩阵是一个二维数组,其元素表示全息图中每个像素的相位值。
初始化全息图矩阵时,需要指定矩阵的大小,即水平像素数目和垂直像素数目。水平像素数目和垂直像素数目决定了全息图的分辨率。
水平和垂直像素的数目
水平像素数目和垂直像素数目通常由以下因素决定:
-
**所需涡旋光场的尺寸:**全息图矩阵的尺寸应该大于或等于所需涡旋光场的尺寸。
-
**衍射效率:**水平像素数目和垂直像素数目越大,衍射效率越高。
-
**计算时间:**水平像素数目和垂直像素数目越大,计算全息图所需的时间越长。
一般来说,对于直径为 D 的涡旋光场,水平像素数目和垂直像素数目建议为 D 的 2-4 倍。
相位调制
初始化全息图矩阵后,需要对矩阵中的元素进行相位调制,以生成涡旋光场全息图。相位调制可以通过以下公式实现:
φ(x, y) = exp(-i 2π mθ(x, y))
其中:
-
φ(x, y) 是全息图矩阵中 (x, y) 处像素的相位值
-
m 是涡旋光场的拓扑荷数
-
θ(x, y) 是 (x, y) 处像素的极坐标角
通过对全息图矩阵中的每个像素进行相位调制,可以生成一个能够产生涡旋光场的全息图。
📣 部分代码
%Initializing Hologram Matrices
H=1920; V=1080;%%Number of Horizontal and Vertical pixels
x=-H/2:1:(H/2-1);y=-V/2:1:(V/2-1);
[X,Y]=meshgrid(x, y);
phi=angle(X+1i*Y);%%Azimuthal angle
l=1;%%Topological charge
nx=100;ny=100;%%Number of horizontal and vertical grooves
gx=nx/H; gy=ny/V;
Hol=mod(l*phi+2*pi*(Y*gy+X*gx),2*pi);
%%%%%% Grascale normalization from [0, 2Pi]to [0 255]
SLM=Hol/max(Hol(:))*255;
fig=figure(1);
imagesc(SLM)
colormap gray
%set(fig,'Position',[1920 0 1920 1080],'MenuBar','none','ToolBar','none','resize','off');%fullscreen SLM
set(gca,'position',[0 0 1 1],'Visible','off')
axis off;
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类