✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
随着信息技术的飞速发展,信息安全问题日益突出。传统的信息加密算法,如 AES、DES 等,已经不能满足现代信息安全的需求。混沌加密算法是一种新兴的加密算法,具有较高的安全性。本文提出了一种基于混沌 AES+AESChaos+hybrid 的信息加密解密算法。该算法将混沌映射应用于 AES 加密算法中,并结合 AESChaos 和 hybrid 技术,提高了算法的安全性。
1. 混沌加密算法
混沌加密算法是利用混沌映射的非线性、不可预测和对初始条件敏感等特性,对信息进行加密。混沌映射具有以下特点:
-
**非线性:**混沌映射不是线性的,即输出值的变化与输入值的变化不成正比。
-
**不可预测:**混沌映射的输出值对初始条件极其敏感,即使初始条件有微小的差别,输出值也会发生很大的变化。
-
**对初始条件敏感:**混沌映射的输出值对初始条件极其敏感,即使初始条件有微小的差别,输出值也会发生很大的变化。
这些特点使得混沌映射非常适合用于信息加密。
2. AES 加密算法
AES(高级加密标准)是一种分组密码加密算法,由美国国家标准与技术研究所(NIST)于 2001 年发布。AES 是一种对称加密算法,即加密和解密使用相同的密钥。AES 算法具有以下特点:
-
**安全性高:**AES 算法的安全性非常高,至今尚未发现任何有效的攻击方法。
-
**效率高:**AES 算法的加密和解密速度都非常快。
-
**灵活性:**AES 算法支持不同的密钥长度和分组长度,可以满足不同的安全需求。
3. AESChaos 加密算法
AESChaos 加密算法是将混沌映射应用于 AES 加密算法中的一种变种算法。AESChaos 算法通过将混沌映射的输出值作为 AES 加密算法的密钥,提高了算法的安全性。
4. hybrid 加密算法
hybrid 加密算法是一种将两种或多种加密算法结合在一起的加密算法。hybrid 加密算法可以利用不同加密算法的优势,提高算法的安全性。
5. 算法设计
本文提出的算法将混沌映射、AES 加密算法、AESChaos 加密算法和 hybrid 加密算法结合在一起,提高了算法的安全性。算法的设计流程如下:
-
**密钥生成:**使用混沌映射生成加密密钥。
-
**AES 加密:**使用 AES 加密算法对信息进行加密。
-
**AESChaos 加密:**使用 AESChaos 加密算法对加密后的信息进行二次加密。
-
**hybrid 加密:**使用 hybrid 加密算法对二次加密后的信息进行三次加密。
6. 算法分析
本文提出的算法具有以下优点:
-
**安全性高:**该算法将混沌映射、AES 加密算法、AESChaos 加密算法和 hybrid 加密算法结合在一起,提高了算法的安全性。
-
**效率高:**该算法的加密和解密速度都非常快。
-
**灵活性:**该算法支持不同的密钥长度和分组长度,可以满足不同的安全需求。
7. 结论
本文提出了一种基于混沌 AES+AESChaos+hybrid 的信息加密解密算法。该算法将混沌映射应用于 AES 加密算法中,并结合 AESChaos 和 hybrid 技术,提高了算法的安全性。该算法具有安全性高、效率高和灵活性等优点,可以满足现代信息安全的需求。
📣 部分代码
function bytes_out = sub_bytes (bytes_in, s_box)
%SUB_BYTES Nonlinear byte substitution using a substitution table.
%
% BYTES_OUT = SUB_BYTES (BYTES_IN, S_BOX)
% transforms the input array BYTES_IN
% into the output array BYTES_OUT
% using the substitution table S_BOX.
%
% BYTES_IN has to be an array of bytes (0 <= BYTES_IN(i) <= 255).
% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001
% Thanks to Matlab's marvellous matrix manipulation mastery,
% the substitution of a whole array can be formulated
% in just one statement
bytes_out = s_box (bytes_in + 1);
function rcon = rcon_gen (vargin)
%RCON_GEN Create round constants.
%
% RCON = RCON_GEN
% creates the round constants vector RCON
% to be used by the function KEY_EXPANSION.
%
% RCON = RCON_GEN (1)
% switches verbose mode on, that displays intermediate results.
%
% RCON_GEN has to be called prior to KEY_EXPANSION.
% Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de
% Version 1.0 30.05.2001
% If there is an optional "verbose mode" argument
if nargin > 0
% Switch the verbose mode flag on
verbose_mode = 1;
% If there is no optional "verbose mode" argument
else
% Switch the verbose mode flag off
verbose_mode = 0;
end
% Display headline if requested
if verbose_mode
% disp (' ');
% disp ('********************************************');
% disp ('* *');
% disp ('* R C O N C R E A T I O N *');
% disp ('* *');
% disp ('********************************************');
%disp (' ');
end
% Define the irreducible polynomial
% to be used in the modulo operation in poly_mult
mod_pol = bin2dec ('100011011');
% The (first byte of the) first round constant is a "1"
rcon(1) = 1;
% Loop over the rest of the elements of the round constant vector
for i = 2 : 10
% The next round constant is twice the previous one; modulo
rcon(i) = poly_mult (rcon(i-1), 2, mod_pol);
end
% The other (LSB) three bytes of all round constants are zeros
rcon = [rcon(:), zeros(10, 3)];
% Display intermediate result if requested
if verbose_mode
disp_hex ('rcon : ', rcon);
end
⛳️ 运行结果
正在上传…重新上传取消
正在上传…重新上传取消
🔗 参考文献
[1]温贺平,陈俞强.面向大数据的超混沌和AES混合加密方法研究[J].计算机应用与软件, 2018, 35(5):5.DOI:10.3969/j.issn.1000-386x.2018.05.057.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类