【信号加密解密】基于混沌AES+AESChaos+hybrid信息加密解密附Matlab代码

本文介绍了一种结合混沌映射、AES加密和AESChaos加密的hybrid算法,旨在提高信息安全。通过非线性、不可预测的混沌映射增强AES的加密,该算法在安全性、效率和灵活性上表现出优势,适用于现代信息安全需求。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着信息技术的飞速发展,信息安全问题日益突出。传统的信息加密算法,如 AES、DES 等,已经不能满足现代信息安全的需求。混沌加密算法是一种新兴的加密算法,具有较高的安全性。本文提出了一种基于混沌 AES+AESChaos+hybrid 的信息加密解密算法。该算法将混沌映射应用于 AES 加密算法中,并结合 AESChaos 和 hybrid 技术,提高了算法的安全性。

1. 混沌加密算法

混沌加密算法是利用混沌映射的非线性、不可预测和对初始条件敏感等特性,对信息进行加密。混沌映射具有以下特点:

  • **非线性:**混沌映射不是线性的,即输出值的变化与输入值的变化不成正比。

  • **不可预测:**混沌映射的输出值对初始条件极其敏感,即使初始条件有微小的差别,输出值也会发生很大的变化。

  • **对初始条件敏感:**混沌映射的输出值对初始条件极其敏感,即使初始条件有微小的差别,输出值也会发生很大的变化。

这些特点使得混沌映射非常适合用于信息加密。

2. AES 加密算法

AES(高级加密标准)是一种分组密码加密算法,由美国国家标准与技术研究所(NIST)于 2001 年发布。AES 是一种对称加密算法,即加密和解密使用相同的密钥。AES 算法具有以下特点:

  • **安全性高:**AES 算法的安全性非常高,至今尚未发现任何有效的攻击方法。

  • **效率高:**AES 算法的加密和解密速度都非常快。

  • **灵活性:**AES 算法支持不同的密钥长度和分组长度,可以满足不同的安全需求。

3. AESChaos 加密算法

AESChaos 加密算法是将混沌映射应用于 AES 加密算法中的一种变种算法。AESChaos 算法通过将混沌映射的输出值作为 AES 加密算法的密钥,提高了算法的安全性。

4. hybrid 加密算法

hybrid 加密算法是一种将两种或多种加密算法结合在一起的加密算法。hybrid 加密算法可以利用不同加密算法的优势,提高算法的安全性。

5. 算法设计

本文提出的算法将混沌映射、AES 加密算法、AESChaos 加密算法和 hybrid 加密算法结合在一起,提高了算法的安全性。算法的设计流程如下:

  • **密钥生成:**使用混沌映射生成加密密钥。

  • **AES 加密:**使用 AES 加密算法对信息进行加密。

  • **AESChaos 加密:**使用 AESChaos 加密算法对加密后的信息进行二次加密。

  • **hybrid 加密:**使用 hybrid 加密算法对二次加密后的信息进行三次加密。

6. 算法分析

本文提出的算法具有以下优点:

  • **安全性高:**该算法将混沌映射、AES 加密算法、AESChaos 加密算法和 hybrid 加密算法结合在一起,提高了算法的安全性。

  • **效率高:**该算法的加密和解密速度都非常快。

  • **灵活性:**该算法支持不同的密钥长度和分组长度,可以满足不同的安全需求。

7. 结论

本文提出了一种基于混沌 AES+AESChaos+hybrid 的信息加密解密算法。该算法将混沌映射应用于 AES 加密算法中,并结合 AESChaos 和 hybrid 技术,提高了算法的安全性。该算法具有安全性高、效率高和灵活性等优点,可以满足现代信息安全的需求。

📣 部分代码

function bytes_out = sub_bytes (bytes_in, s_box)%SUB_BYTES  Nonlinear byte substitution using a substitution table.%%   BYTES_OUT = SUB_BYTES (BYTES_IN, S_BOX) %   transforms the input array BYTES_IN %   into the output array BYTES_OUT%   using the substitution table S_BOX.%%   BYTES_IN has to be an array of bytes (0 <= BYTES_IN(i) <= 255).%   Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de%   Version 1.0     30.05.2001% Thanks to Matlab's marvellous matrix manipulation mastery,% the substitution of a whole array can be formulated % in just one statementbytes_out = s_box (bytes_in + 1);function rcon = rcon_gen (vargin)%RCON_GEN  Create round constants.%%   RCON = RCON_GEN %   creates the round constants vector RCON%   to be used by the function KEY_EXPANSION.%%   RCON = RCON_GEN (1)%   switches verbose mode on, that displays intermediate results.%%   RCON_GEN has to be called prior to KEY_EXPANSION.%   Copyright 2001-2005, J. J. Buchholz, Hochschule Bremen, buchholz@hs-bremen.de%   Version 1.0     30.05.2001% If there is an optional "verbose mode" argumentif nargin > 0        % Switch the verbose mode flag on    verbose_mode = 1;    % If there is no optional "verbose mode" argumentelse        % Switch the verbose mode flag off    verbose_mode = 0;    end% Display headline if requestedif verbose_mode  %  disp (' ');  %  disp ('********************************************');   % disp ('*                                          *');  %  disp ('*        R C O N   C R E A T I O N         *');  %  disp ('*                                          *');   % disp ('********************************************');    %disp (' ');end% Define the irreducible polynomial % to be used in the modulo operation in poly_multmod_pol = bin2dec ('100011011');% The (first byte of the) first round constant is a "1"rcon(1) = 1;% Loop over the rest of the elements of the round constant vectorfor i = 2 : 10    % The next round constant is twice the previous one; modulo     rcon(i) = poly_mult (rcon(i-1), 2, mod_pol);    end% The other (LSB) three bytes of all round constants are zerosrcon = [rcon(:), zeros(10, 3)];% Display intermediate result if requestedif verbose_mode    disp_hex ('rcon : ', rcon);end      

⛳️ 运行结果

正在上传…重新上传取消

正在上传…重新上传取消

🔗 参考文献

[1]温贺平,陈俞强.面向大数据的超混沌和AES混合加密方法研究[J].计算机应用与软件, 2018, 35(5):5.DOI:10.3969/j.issn.1000-386x.2018.05.057.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值