✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
本文提出了一种基于奇异值分解(SVD)的音频水印嵌入提取方法,该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。该方法首先对音频信号进行SVD分解,然后将水印信息嵌入到奇异值中。在提取阶段,通过计算水印信息与提取信号的奇异值之间的相关性,可以提取出嵌入的水印信息。实验结果表明,该方法能够有效地抵抗高斯白噪声、粉红噪声和低通滤波处理,误码率较低。
引言
音频水印技术是一种将版权信息或其他信息嵌入到音频信号中,而不影响音频信号的感知质量的技术。音频水印技术在版权保护、内容认证和信息隐藏等领域有着广泛的应用。
传统的音频水印技术大多基于时域或频域处理,这些技术在抵抗加噪和滤波处理方面表现不佳。奇异值分解(SVD)是一种信号处理技术,它可以将信号分解为奇异值、左奇异向量和右奇异向量的乘积。奇异值表示信号的能量分布,奇异向量表示信号的结构信息。
本文提出了一种基于SVD的音频水印嵌入提取方法,该方法将水印信息嵌入到奇异值中。该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。
嵌入算法
该方法的嵌入算法如下:
-
对音频信号进行SVD分解,得到奇异值矩阵S、左奇异向量矩阵U和右奇异向量矩阵V。
-
将水印信息转换为二进制序列。
-
将二进制序列嵌入到奇异值矩阵S中。
-
重构水印嵌入后的音频信号。
提取算法
该方法的提取算法如下:
-
对水印嵌入后的音频信号进行SVD分解,得到奇异值矩阵S'、左奇异向量矩阵U'和右奇异向量矩阵V'。
-
计算S'和S之间的相关性矩阵R。
-
将R中的最大相关性值对应的二进制序列提取出来。
-
将二进制序列转换为水印信息。
实验结果
为了验证该方法的鲁棒性,我们进行了以下实验:
-
**加噪实验:**向水印嵌入后的音频信号添加高斯白噪声和粉红噪声,信噪比分别为20dB、15dB和10dB。
-
**滤波实验:**对水印嵌入后的音频信号进行低通滤波处理,截止频率分别为1kHz、2kHz和3kHz。
实验结果表明,该方法能够有效地抵抗加噪和滤波处理,误码率较低。
结论
本文提出了一种基于SVD的音频水印嵌入提取方法,该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。该方法将水印信息嵌入到奇异值中,通过计算水印信息与提取信号的奇异值之间的相关性,可以提取出嵌入的水印信息。实验结果表明,该方法能够有效地抵抗高斯白噪声、粉红噪声和低通滤波处理,误码率较低。
📣 部分代码
function out=zigzag(in)
% Zig-zag scanning
% IN specifies the input matrix of any size
% OUT is the resulting zig-zag scanned (1-D) vector
% having length equal to the total number of elements in the 2-D input matrix
%
% As an example,
% IN = [1 2 6 7
% 3 5 8 11
% 4 9 10 12];
% OUT = ZIGZAG(IN)
% OUT=
% 1 2 3 4 5 6 7 8 9 10 11 12
[num_rows num_cols]=size(in);
% Initialise the output vector
out=zeros(1,num_rows*num_cols);
cur_row=1; cur_col=1; cur_index=1;
% First element
%out(1)=in(1,1);
while cur_row<=num_rows & cur_col<=num_cols
if cur_row==1 & mod(cur_row+cur_col,2)==0 & cur_col~=num_cols
out(cur_index)=in(cur_row,cur_col);
cur_col=cur_col+1; %move right at the top
cur_index=cur_index+1;
elseif cur_row==num_rows & mod(cur_row+cur_col,2)~=0 & cur_col~=num_cols
out(cur_index)=in(cur_row,cur_col);
cur_col=cur_col+1; %move right at the bottom
cur_index=cur_index+1;
elseif cur_col==1 & mod(cur_row+cur_col,2)~=0 & cur_row~=num_rows
out(cur_index)=in(cur_row,cur_col);
cur_row=cur_row+1; %move down at the left
cur_index=cur_index+1;
elseif cur_col==num_cols & mod(cur_row+cur_col,2)==0 & cur_row~=num_rows
out(cur_index)=in(cur_row,cur_col);
cur_row=cur_row+1; %move down at the right
cur_index=cur_index+1;
elseif cur_col~=1 & cur_row~=num_rows & mod(cur_row+cur_col,2)~=0
out(cur_index)=in(cur_row,cur_col);
cur_row=cur_row+1; cur_col=cur_col-1; %move diagonally left down
cur_index=cur_index+1;
elseif cur_row~=1 & cur_col~=num_cols & mod(cur_row+cur_col,2)==0
out(cur_index)=in(cur_row,cur_col);
cur_row=cur_row-1; cur_col=cur_col+1; %move diagonally right up
cur_index=cur_index+1;
elseif cur_row==num_rows & cur_col==num_cols %obtain the bottom right element
out(end)=in(end); %end of the operation
break %terminate the operation
end
end
⛳️ 运行结果
🔗 参考文献
[1]黄菊.基于SVD的音频认证水印算法研究[D].西南交通大学[2024-04-05].DOI:CNKI:CDMD:2.1013.106847.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类