【信号隐藏】基于奇异值分解SVD实现音频水印嵌入提取含加噪滤波检验鲁棒性含误码率附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

本文提出了一种基于奇异值分解(SVD)的音频水印嵌入提取方法,该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。该方法首先对音频信号进行SVD分解,然后将水印信息嵌入到奇异值中。在提取阶段,通过计算水印信息与提取信号的奇异值之间的相关性,可以提取出嵌入的水印信息。实验结果表明,该方法能够有效地抵抗高斯白噪声、粉红噪声和低通滤波处理,误码率较低。

引言

音频水印技术是一种将版权信息或其他信息嵌入到音频信号中,而不影响音频信号的感知质量的技术。音频水印技术在版权保护、内容认证和信息隐藏等领域有着广泛的应用。

传统的音频水印技术大多基于时域或频域处理,这些技术在抵抗加噪和滤波处理方面表现不佳。奇异值分解(SVD)是一种信号处理技术,它可以将信号分解为奇异值、左奇异向量和右奇异向量的乘积。奇异值表示信号的能量分布,奇异向量表示信号的结构信息。

本文提出了一种基于SVD的音频水印嵌入提取方法,该方法将水印信息嵌入到奇异值中。该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。

嵌入算法

该方法的嵌入算法如下:

  1. 对音频信号进行SVD分解,得到奇异值矩阵S、左奇异向量矩阵U和右奇异向量矩阵V。

  2. 将水印信息转换为二进制序列。

  3. 将二进制序列嵌入到奇异值矩阵S中。

  4. 重构水印嵌入后的音频信号。

提取算法

该方法的提取算法如下:

  1. 对水印嵌入后的音频信号进行SVD分解,得到奇异值矩阵S'、左奇异向量矩阵U'和右奇异向量矩阵V'。

  2. 计算S'和S之间的相关性矩阵R。

  3. 将R中的最大相关性值对应的二进制序列提取出来。

  4. 将二进制序列转换为水印信息。

实验结果

为了验证该方法的鲁棒性,我们进行了以下实验:

  1. **加噪实验:**向水印嵌入后的音频信号添加高斯白噪声和粉红噪声,信噪比分别为20dB、15dB和10dB。

  2. **滤波实验:**对水印嵌入后的音频信号进行低通滤波处理,截止频率分别为1kHz、2kHz和3kHz。

实验结果表明,该方法能够有效地抵抗加噪和滤波处理,误码率较低。

结论

本文提出了一种基于SVD的音频水印嵌入提取方法,该方法具有较好的鲁棒性,能够抵抗加噪和滤波处理。该方法将水印信息嵌入到奇异值中,通过计算水印信息与提取信号的奇异值之间的相关性,可以提取出嵌入的水印信息。实验结果表明,该方法能够有效地抵抗高斯白噪声、粉红噪声和低通滤波处理,误码率较低。

📣 部分代码

function out=zigzag(in)% Zig-zag scanning% IN specifies the input matrix of any size% OUT is the resulting zig-zag scanned (1-D) vector% having length equal to the total number of elements in the 2-D input matrix%% As an example,% IN = [1  2  6  7%    3  5  8  11%    4  9  10  12];% OUT = ZIGZAG(IN)% OUT=%  1     2     3     4     5     6     7     8     9    10    11    12[num_rows num_cols]=size(in);% Initialise the output vectorout=zeros(1,num_rows*num_cols);cur_row=1;  cur_col=1;  cur_index=1;% First element%out(1)=in(1,1);while cur_row<=num_rows & cur_col<=num_cols  if cur_row==1 & mod(cur_row+cur_col,2)==0 & cur_col~=num_cols    out(cur_index)=in(cur_row,cur_col);    cur_col=cur_col+1;              %move right at the top    cur_index=cur_index+1;      elseif cur_row==num_rows & mod(cur_row+cur_col,2)~=0 & cur_col~=num_cols    out(cur_index)=in(cur_row,cur_col);    cur_col=cur_col+1;              %move right at the bottom    cur_index=cur_index+1;      elseif cur_col==1 & mod(cur_row+cur_col,2)~=0 & cur_row~=num_rows    out(cur_index)=in(cur_row,cur_col);    cur_row=cur_row+1;              %move down at the left    cur_index=cur_index+1;      elseif cur_col==num_cols & mod(cur_row+cur_col,2)==0 & cur_row~=num_rows    out(cur_index)=in(cur_row,cur_col);    cur_row=cur_row+1;              %move down at the right    cur_index=cur_index+1;      elseif cur_col~=1 & cur_row~=num_rows & mod(cur_row+cur_col,2)~=0    out(cur_index)=in(cur_row,cur_col);    cur_row=cur_row+1;    cur_col=cur_col-1;  %move diagonally left down    cur_index=cur_index+1;      elseif cur_row~=1 & cur_col~=num_cols & mod(cur_row+cur_col,2)==0    out(cur_index)=in(cur_row,cur_col);    cur_row=cur_row-1;    cur_col=cur_col+1;  %move diagonally right up    cur_index=cur_index+1;      elseif cur_row==num_rows & cur_col==num_cols  %obtain the bottom right element        out(end)=in(end);              %end of the operation    break                    %terminate the operation    endend

⛳️ 运行结果

🔗 参考文献

[1]黄菊.基于SVD的音频认证水印算法研究[D].西南交通大学[2024-04-05].DOI:CNKI:CDMD:2.1013.106847.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值