【物理应用】基于布谷鸟搜索算法求解功率角摆动曲线优化问题附Matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

功率角摆动曲线是电力系统稳定性分析中的重要指标。本文提出了一种基于布谷鸟搜索算法的功率角摆动曲线优化方法。BSA是一种受布谷鸟繁殖行为启发的元启发式算法。通过模拟布谷鸟的筑巢和产卵行为,BSA可以有效地搜索最优解。本文将CS应用于功率角摆动曲线优化问题,以最小化摆动幅度和提高稳定性。

引言

功率角摆动曲线描述了同步发电机在扰动后的功率角变化情况。其形状和幅度反映了电力系统的稳定性。摆动幅度过大或持续时间过长,都可能导致系统失稳。因此,优化功率角摆动曲线对于电力系统安全运行至关重要。

布谷鸟搜索算法

布谷鸟搜索算法是一种基于布谷鸟繁殖行为的元启发式算法。布谷鸟是一种寄生鸟,会将自己的卵产在其他鸟类的巢穴中。为了提高繁殖成功率,布谷鸟会模仿其他鸟类的叫声,以迷惑寄主鸟。

BSA算法模拟了布谷鸟的筑巢和产卵行为。算法的基本步骤如下:

  1. 初始化布谷鸟种群。

  2. 布谷鸟随机选择一个巢穴,并产下一枚卵。

  3. 评估布谷鸟卵的质量。

  4. 如果布谷鸟卵的质量优于寄主鸟卵,则替换寄主鸟卵。

  5. 重复步骤2-4,直到达到终止条件。

功率角摆动曲线优化问题

功率角摆动曲线优化问题可以表述为:

min f(x) = max(|δ(t)|, t ∈ [0, T])

其中:

  • f(x)为目标函数,代表功率角摆动幅度

  • δ(t)为功率角

  • T为摆动时间

基于CS的功率角摆动曲线优化方法

本文提出的基于CA的功率角摆动曲线优化方法具体步骤如下:

  1. 初始化布谷鸟种群,种群规模为N。

  2. 对每个布谷鸟,随机生成一组控制变量x。

  3. 根据控制变量x,仿真功率系统并计算功率角摆动幅度f(x)。

  4. 评估布谷鸟卵的质量,即f(x)的值。

  5. 选择质量最优的布谷鸟,并将其控制变量作为新的寄主鸟巢。

  6. 随机生成新的布谷鸟,并将其产在新的寄主鸟巢中。

  7. 重复步骤3-6,直到达到终止条件。

仿真结果

本文将提出的方法应用于一个单机无限母线系统。仿真结果表明,该方法可以有效地优化功率角摆动曲线,减小摆动幅度并提高稳定性。

结论

本文提出了一种基于布谷鸟搜索算法的功率角摆动曲线优化方法。该方法通过模拟布谷鸟的繁殖行为,可以有效地搜索最优解。仿真结果表明,该方法可以有效地优化功率角摆动曲线,减小摆动幅度并提高稳定性。

📣 部分代码

% main_script_cuckoo_search.mclear;clc;% Cuckoo Search Algorithm Parameterspopulation_size = 30;max_iterations = 100;pa = 0.25; % Probability of a cuckoo's egg being discovered and replacedalpha = 0.9; % Step size scaling factor% Targettarget_angle = 50; % Change this to your desired target angletarget_time = 0.5; % Change this to your desired target time% Initializationlower_bounds = [0.1, 0.1, 0.1, 0.1]; % Lower bounds for [pm, pm1, pm2, pm3]upper_bounds = [2.0, 2.0, 2.0, 2.0]; % Upper bounds for [pm, pm1, pm2, pm3]num_variables = length(lower_bounds);population = repmat(lower_bounds, population_size, 1) + rand(population_size, num_variables) .* (repmat(upper_bounds, population_size, 1) - repmat(lower_bounds, population_size, 1));% Evaluate initial fitness for each cuckoo's eggfitness_values = zeros(population_size, 1);for i = 1:population_size    fitness_values(i) = objective_function(population(i, :), target_angle, target_time);end% Find the best individual and best fitness value[best_fitness, best_index] = min(fitness_values);best_individual = population(best_index, :);% Main Loop

⛳️ 运行结果

🔗 参考文献

[1] 欧阳欣昕.离散型布谷鸟搜索算法及其在组合优化问题中的应用[D].广西民族大学[2024-04-11].DOI:CNKI:CDMD:2.1013.247695.

[2] 莫愿斌,郑巧燕,马彦追.单纯形法的布谷鸟搜索算法及其在约束优化问题中的应用[J].计算机与应用化学, 2015, 32(2):6.DOI:10.11719/com.app.chem20150219.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值