✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
功率角摆动曲线是电力系统稳定性分析中的重要指标。本文提出了一种基于布谷鸟搜索算法的功率角摆动曲线优化方法。BSA是一种受布谷鸟繁殖行为启发的元启发式算法。通过模拟布谷鸟的筑巢和产卵行为,BSA可以有效地搜索最优解。本文将CS应用于功率角摆动曲线优化问题,以最小化摆动幅度和提高稳定性。
引言
功率角摆动曲线描述了同步发电机在扰动后的功率角变化情况。其形状和幅度反映了电力系统的稳定性。摆动幅度过大或持续时间过长,都可能导致系统失稳。因此,优化功率角摆动曲线对于电力系统安全运行至关重要。
布谷鸟搜索算法
布谷鸟搜索算法是一种基于布谷鸟繁殖行为的元启发式算法。布谷鸟是一种寄生鸟,会将自己的卵产在其他鸟类的巢穴中。为了提高繁殖成功率,布谷鸟会模仿其他鸟类的叫声,以迷惑寄主鸟。
BSA算法模拟了布谷鸟的筑巢和产卵行为。算法的基本步骤如下:
-
初始化布谷鸟种群。
-
布谷鸟随机选择一个巢穴,并产下一枚卵。
-
评估布谷鸟卵的质量。
-
如果布谷鸟卵的质量优于寄主鸟卵,则替换寄主鸟卵。
-
重复步骤2-4,直到达到终止条件。
功率角摆动曲线优化问题
功率角摆动曲线优化问题可以表述为:
min f(x) = max(|δ(t)|, t ∈ [0, T])
其中:
-
f(x)为目标函数,代表功率角摆动幅度
-
δ(t)为功率角
-
T为摆动时间
基于CS的功率角摆动曲线优化方法
本文提出的基于CA的功率角摆动曲线优化方法具体步骤如下:
-
初始化布谷鸟种群,种群规模为N。
-
对每个布谷鸟,随机生成一组控制变量x。
-
根据控制变量x,仿真功率系统并计算功率角摆动幅度f(x)。
-
评估布谷鸟卵的质量,即f(x)的值。
-
选择质量最优的布谷鸟,并将其控制变量作为新的寄主鸟巢。
-
随机生成新的布谷鸟,并将其产在新的寄主鸟巢中。
-
重复步骤3-6,直到达到终止条件。
仿真结果
本文将提出的方法应用于一个单机无限母线系统。仿真结果表明,该方法可以有效地优化功率角摆动曲线,减小摆动幅度并提高稳定性。
结论
本文提出了一种基于布谷鸟搜索算法的功率角摆动曲线优化方法。该方法通过模拟布谷鸟的繁殖行为,可以有效地搜索最优解。仿真结果表明,该方法可以有效地优化功率角摆动曲线,减小摆动幅度并提高稳定性。
📣 部分代码
% main_script_cuckoo_search.m
clear;
clc;
% Cuckoo Search Algorithm Parameters
population_size = 30;
max_iterations = 100;
pa = 0.25; % Probability of a cuckoo's egg being discovered and replaced
alpha = 0.9; % Step size scaling factor
% Target
target_angle = 50; % Change this to your desired target angle
target_time = 0.5; % Change this to your desired target time
% Initialization
lower_bounds = [0.1, 0.1, 0.1, 0.1]; % Lower bounds for [pm, pm1, pm2, pm3]
upper_bounds = [2.0, 2.0, 2.0, 2.0]; % Upper bounds for [pm, pm1, pm2, pm3]
num_variables = length(lower_bounds);
population = repmat(lower_bounds, population_size, 1) + rand(population_size, num_variables) .* (repmat(upper_bounds, population_size, 1) - repmat(lower_bounds, population_size, 1));
% Evaluate initial fitness for each cuckoo's egg
fitness_values = zeros(population_size, 1);
for i = 1:population_size
fitness_values(i) = objective_function(population(i, :), target_angle, target_time);
end
% Find the best individual and best fitness value
[best_fitness, best_index] = min(fitness_values);
best_individual = population(best_index, :);
% Main Loop
⛳️ 运行结果
🔗 参考文献
[1] 欧阳欣昕.离散型布谷鸟搜索算法及其在组合优化问题中的应用[D].广西民族大学[2024-04-11].DOI:CNKI:CDMD:2.1013.247695.
[2] 莫愿斌,郑巧燕,马彦追.单纯形法的布谷鸟搜索算法及其在约束优化问题中的应用[J].计算机与应用化学, 2015, 32(2):6.DOI:10.11719/com.app.chem20150219.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类