【电力系统】基于花朵授粉授粉求解含风电场的十机24时系统机组出力问题附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

随着可再生能源的快速发展,风电场已成为电力系统中重要的组成部分。然而,风电场的随机性和波动性给电力系统安全稳定运行带来了挑战。为了解决这一问题,本文提出了一种基于花朵授粉算法(FPA)求解含风电场的十机24时系统机组出力问题的优化方法。该方法考虑了风电场出力预测误差、机组出力约束和系统安全稳定约束,旨在实现电力系统经济安全运行。

1. 问题描述

含风电场的十机24时系统机组出力问题可以描述为:

min F(x) = Σ(Ci * Pi) + Σ(Cwi * Piw)

其中:

  • F(x)为系统总发电成本

  • Ci为第i台火电机组的单位发电成本

  • Pi为第i台火电机组的出力

  • Cwi为风电场的单位发电成本

  • Piw为风电场的出力

约束条件:

  • 火电机组出力约束:Pimin ≤ Pi ≤ Pimax

  • 风电场出力约束:0 ≤ Piw ≤ Pwiw

  • 系统平衡约束:ΣPi + Piw = Pd

  • 系统安全稳定约束:满足暂态稳定、电压稳定和频率稳定等约束

2. 花朵授粉算法

花朵授粉算法(FPA)是一种基于花朵授粉过程的优化算法。其基本原理如下:

  • **花朵初始化:**随机生成一定数量的花朵,每个花朵代表一个候选解。

  • **授粉:**将花粉从一朵花转移到另一朵花,从而产生新的花朵。

  • **传播:**花粉通过随机游走传播到新的位置,产生新的花朵。

  • **选择:**根据花朵的花蜜值(目标函数值)选择最优的花朵。

3. FPA求解机组出力问题

本文将FPA应用于求解含风电场的十机24时系统机组出力问题。具体步骤如下:

1. 花朵初始化

随机生成一定数量的花朵,每个花朵代表一个机组出力方案。

2. 授粉

将花粉从一朵花转移到另一朵花,产生新的花朵。授粉概率与花朵的花蜜值成正比。

3. 传播

花粉通过随机游走传播到新的位置,产生新的花朵。传播距离与花粉的质量成正比。

4. 选择

根据花朵的花蜜值(目标函数值)选择最优的花朵。

5. 迭代

重复步骤2-4,直到达到终止条件。

4. 仿真结果

本文以 IEEE 10 机系统为例,仿真验证了所提方法的有效性。仿真结果表明:

  • **经济性:**所提方法可以有效降低系统总发电成本。

  • **安全性:**所提方法可以满足系统安全稳定约束,保证系统安全稳定运行。

  • **鲁棒性:**所提方法对风电场出力预测误差具有较好的鲁棒性。

5. 结论

本文提出了一种基于花朵授粉算法求解含风电场的十机24时系统机组出力问题的优化方法。该方法考虑了风电场出力预测误差、机组出力约束和系统安全稳定约束,旨在实现电力系统经济安全运行。仿真结果表明,所提方法具有良好的经济性、安全性、鲁棒性,为含风电场的电力系统机组出力优化提供了有效的解决途径。

📣 部分代码

function mpc = data_ieee30gai%CASE_IEEE30  Power flow data for IEEE 30 bus test case.%  该数据是文献A united approach to optimal real and reactive power%  dispatch上的数据,与data_ieee30的主要区别是变压器变比均改为大于1%% MATPOWER Case Format : Version 2mpc.version = '2';%%-----  Power Flow Data  -----%%%% system MVA basempc.baseMVA = 100;%% bus data%  bus_i  type  Pd  Qd    Gs  Bs  area   Vm    Va     baseKV  zone  Vmax  Vminmpc.bus = [  1       3      0  0      0  0   1    1.05    0          132       1      1.06  0.94  2       2     21.7  12.7  0  0   1    1.04   -5.48      132       1      1.06  0.94;  3       1     2.4  1.2      0  0   1    1.021  -7.96    132       1     1.06  0.94;  4       1     7.6  1.6      0  0   1    1.012   -9.62      132       1      1.06  0.94;  5       2     94.2  19      0  0   1    1.01   -14.37      132       1      1.06  0.94;  6       1      0  0      0  0   1    1.01   -11.34      132       1      1.06  0.94;  7       1     22.8  10.9  0  0   1    1.002   -13.12      132       1      1.06  0.94;  8       2     30  30      0  0   1    1.01   -12.1      132       1      1.06  0.94;  9       1     0  0      0  0   1    1.051   -14.38      1       1      1.06  0.94;  10       1     5.8  2      0  19   1    1.045   -15.97      33       1      1.06  0.94;  11       2     0  0      0  0   1    1.05   -14.39      11       1      1.06  0.94;  12       1     11.2  7.5      0  0   1    1.057   -15.24      33       1      1.06  0.94;  13       2     0  0      0  0   1    1.05   -15.24    11      1      1.06  0.94;  14       1     6.2  1.6      0  0   1    1.042   -16.13      33       1      1.06  0.94;  15       1     8.2  2.5      0  0   1    1.038   -16.22      33       1      1.06  0.94;  16       1     3.5  1.8      0  0   1    1.045  -15.83      33       1      1.06  0.94;  17       1     9  5.8      0  0   1    1.04   -16.14      33       1      1.06  0.94;  18       1     3.2  0.9      0  0   1    1.028  -16.82      33       1      1.06  0.94;  19       1     9.5  3.4    0  0   1    1.026   -17      33       1      1.06  0.94;  20       1     2.2  0.7      0  0   1    1.03   -16.8      33       1      1.06  0.94;  21       1     17.5  11.2  0  0   1    1.033   -16.42      33       1      1.06  0.94;  22       1     0  0      0  0   1    1.033   -16.41   33       1      1.06  0.94;  23       1     3.2  1.6      0  0   1    1.027   -16.61   33       1      1.06  0.94;  24       1     8.7  6.7      0  4.3   1    1.021  -16.78      33       1      1.06  0.94;  25       1     0  0      0  0   1    1.017   -16.35      33       1      1.06  0.94;  26       1     3.5  2.3    0  0   1    1     -16.77      33       1      1.06  0.94;  27       1     0  0      0  0   1    1.023  -15.82      33       1      1.06  0.94;  28       1     0  0      0  0   1    1.007   -11.97      132       1      1.06  0.94;  29       1     2.4  0.9      0  0   1    1.003  -17.06   33       1      1.06  0.94;  30       1     10.6  1.9      0  0   1    0.992   -17.94      33       1      1.06  0.94;];%% generator data%  bus   Pg       Qg    Qmax  Qmin  Vg    mBase  status  Pmax  Pmin  Pc1  Pc2  Qc1min  Qc1max  Qc2min  Qc2max  ramp_agc  ramp_10  ramp_30  ramp_q  apfmpc.gen = [  1  99.211  5.335  200      -20     1.05      100        1       200   50       0  0  0  0  0  0  0  0  0  0  0;  2  80      27.657  100      -20     1.04      100        1        80   20       0  0  0  0  0  0  0  0  0  0  0;  5  50      21.544  80      -15     1.01      100        1        50   15       0  0  0  0  0  0  0  0  0  0  0;  8  20      22.933  60      -15     1.01      100        1        35   10       0  0  0  0  0  0  0  0  0  0  0;  11  20      38.583  50      -10     1.05      100        1        30   10       0  0  0  0  0  0  0  0  0  0  0;  13  20      40.345  60      -15     1.05      100        1        40   12       0  0  0  0  0  0  0  0  0  0  0;];%% branch data%  fbus  tbus   r        x         b  rateA  rateB  rateC  ratio  angle  status  angmin  angmaxmpc.branch = [  1       2    0.0192  0.0575  0.0528    0        0        0      0       0        1       -360  360;  1       3      0.0452  0.1852  0.0408    0       0       0       0       0        1       -360  360;  2       4      0.057  0.1737  0.0368    0        0       0       0       0        1     -360  360;  3       4      0.0132  0.0379  0.0084    0        0       0       0       0        1      -360  360;  2       5      0.0472  0.1983  0.0418    0        0        0       0       0        1       -360  360;  2       6      0.0581  0.1763  0.0374    0        0        0       0       0        1       -360  360;  4       6      0.0119  0.0414  0.009    0        0        0       0       0        1       -360  360;  5       7      0.046  0.116  0.0204    0       0        0       0       0        1     -360  360;  6       7      0.0267  0.082  0.017    0        0        0       0       0        1       -360  360;  6       8      0.012  0.042  0.009    0        0        0       0       0        1       -360  360;  6       9      0      0.208  0        0        0        0       1.078   0        1       -360  360;  6       10    0      0.556  0        0        0        0       1.069   0        1       -360  360;  9       11      0      0.208  0        0        0        0       0       0        1       -360  360;  9       10      0      0.11  0        0        0        0       0       0        1       -360  360;  4       12      0      0.256  0        0        0        0       1.032   0        1       -360  360;  12       13      0      0.14  0        0        0        0       0       0        1       -360  360;  12       14      0.1231  0.2559  0        0        0        0       0       0        1     -360  360;  12       15      0.0662  0.1304  0        0       0        0       0       0        1    -360  360;  12       16      0.0945  0.1987  0        0        0        0       0       0        1       -360  360;  14       15      0.221  0.1997  0        0        0        0       0       0        1       -360  360;  16       17      0.0824  0.1932  0        0      0        0       0       0        1     -360  360;  15       18      0.1070  0.2185  0        0        0        0       0       0        1     -360  360;  18       19      0.0639  0.1292  0        0        0        0       0       0        1     -360  360;  19       20      0.034  0.0680  0        0        0        0       0       0        1       -360  360;  10       20      0.0936  0.2090  0        0        0        0       0       0        1       -360  360;  10       17      0.0324  0.0845  0        0        0        0       0       0        1    -360  360;  10       21      0.0348  0.0749  0        0        0        0       0       0        1       -360  360;  10       22      0.0727  0.1499  0        0        0        0       0       0        1       -360  360;  21       22      0.0116  0.0236  0        0        0        0       0       0        1     -360  360;  15       23      0.1000  0.2020  0        0     0        0       0       0        1       -360  360;  22       24      0.1150  0.1790  0        0        0        0       0       0        1     -360  360;  23       24      0.1320  0.2700  0        0        0        0       0       0        1    -360  360;  24       25      0.1885  0.3292  0        0        0        0       0       0        1       -360  360;  25       26      0.2544  0.3800  0        0        0        0       0       0        1       -360  360;  25       27      0.1093  0.2087  0        0        0        0       0       0        1       -360  360;  28       27      0      0.3960  0        0        0        0       1.068   0        1    -360  360;  27       29      0.2198  0.4153  0        0        0        0       0       0        1       -360  360;  27       30      0.3202  0.6027  0        0        0        0       0       0        1     -360  360;  29       30      0.2399  0.4533  0        0        0        0       0       0        1       -360  360;  8       28      0.6360  0.2000  0.0428    0        0        0       0       0        1    -360  360;  6       28      0.0169  0.0599  0.013    0        0        0       0       0        1       -360  360;];%%-----  OPF Data  -----%%%% generator cost data%  1  startup  shutdown  n  x1  y1  ...  xn  yn 分段线性(piecewise linear)%  2  startup  shutdown  n  c(n-1)  ...  c0 多项式1(polynomial)mpc.gencost = [  2  0  0  3  0.00375  2      0;  2  0  0  3  0.0175  1.75  0;  2  0  0  3  0.0625  1.00  0;  2  0  0  3  0.00834  3.25  0;  2  0  0  3  0.0250  3.00  0;  2  0  0  3  0.0250  3.00  0;];%% bus namesmpc.bus_name = {  'Glen Lyn 132';  'Claytor  132';  'Kumis    132';  'Hancock  132';  'Fieldale 132';  'Roanoke  132';  'Blaine   132';  'Reusens  132';  'Roanoke  1.0';  'Roanoke   33';  'Roanoke   11';  'Hancock   33';  'Hancock   11';  'Bus 14    33';  'Bus 15    33';  'Bus 16    33';  'Bus 17    33';  'Bus 18    33';  'Bus 19    33';  'Bus 20    33';  'Bus 21    33';  'Bus 22    33';  'Bus 23    33';  'Bus 24    33';  'Bus 25    33';  'Bus 26    33';  'Cloverdle 33';  'Cloverdle132';  'Bus 29    33';  'Bus 30    33';};% Warnings from cdf2matp conversion:%% ***** check the title format in the first line of the cdf file.% ***** Qmax = Qmin at generator at bus    1 (Qmax set to Qmin + 10)% ***** MVA limit of branch 1 - 2 not given, set to 0% ***** MVA limit of branch 1 - 3 not given, set to 0% ***** MVA limit of branch 2 - 4 not given, set to 0% ***** MVA limit of branch 3 - 4 not given, set to 0% ***** MVA limit of branch 2 - 5 not given, set to 0% ***** MVA limit of branch 2 - 6 not given, set to 0% ***** MVA limit of branch 4 - 6 not given, set to 0% ***** MVA limit of branch 5 - 7 not given, set to 0% ***** MVA limit of branch 6 - 7 not given, set to 0% ***** MVA limit of branch 6 - 8 not given, set to 0% ***** MVA limit of branch 6 - 9 not given, set to 0% ***** MVA limit of branch 6 - 10 not given, set to 0% ***** MVA limit of branch 9 - 11 not given, set to 0% ***** MVA limit of branch 9 - 10 not given, set to 0% ***** MVA limit of branch 4 - 12 not given, set to 0% ***** MVA limit of branch 12 - 13 not given, set to 0% ***** MVA limit of branch 12 - 14 not given, set to 0% ***** MVA limit of branch 12 - 15 not given, set to 0% ***** MVA limit of branch 12 - 16 not given, set to 0% ***** MVA limit of branch 14 - 15 not given, set to 0% ***** MVA limit of branch 16 - 17 not given, set to 0% ***** MVA limit of branch 15 - 18 not given, set to 0% ***** MVA limit of branch 18 - 19 not given, set to 0% ***** MVA limit of branch 19 - 20 not given, set to 0% ***** MVA limit of branch 10 - 20 not given, set to 0% ***** MVA limit of branch 10 - 17 not given, set to 0% ***** MVA limit of branch 10 - 21 not given, set to 0% ***** MVA limit of branch 10 - 22 not given, set to 0% ***** MVA limit of branch 21 - 22 not given, set to 0% ***** MVA limit of branch 15 - 23 not given, set to 0% ***** MVA limit of branch 22 - 24 not given, set to 0% ***** MVA limit of branch 23 - 24 not given, set to 0% ***** MVA limit of branch 24 - 25 not given, set to 0% ***** MVA limit of branch 25 - 26 not given, set to 0% ***** MVA limit of branch 25 - 27 not given, set to 0% ***** MVA limit of branch 28 - 27 not given, set to 0% ***** MVA limit of branch 27 - 29 not given, set to 0% ***** MVA limit of branch 27 - 30 not given, set to 0% ***** MVA limit of branch 29 - 30 not given, set to 0% ***** MVA limit of branch 8 - 28 not given, set to 0% ***** MVA limit of branch 6 - 28 not given, set to 0

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值