✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在无线通信系统中,信道衰落是一个重要的因素,它会影响信号的传输质量。本文分析了 AWGN 信道、Rayleigh 衰落信道和 Rician 衰落信道下 QPSK 信号调制的误码率性能。
1. 相关概念
1.1 AWGN 信道
AWGN 信道(加性白高斯噪声信道)是一种理想化的信道模型,其中噪声为加性白高斯噪声。AWGN 信道通常用于分析基本通信系统。
1.2 Rayleigh 衰落信道
Rayleigh 衰落信道是一种常见的无线信道模型,其中信号受到多径传播的影响,导致信号幅度服从瑞利分布。瑞利衰落信道通常用于模拟城市或室内环境。
1.3 Rician 衰落信道
Rician 衰落信道是一种介于 AWGN 信道和 Rayleigh 衰落信道之间的信道模型。Rician 衰落信道中,信号受到多径传播的影响,但存在一个强烈的视距分量。Rician 衰落信道通常用于模拟郊区或农村环境。
1.4 QPSK 调制
QPSK(正交相移键控)是一种四相调制技术,其中每个符号携带 2 比特信息。QPSK 调制通常用于无线通信系统。
2. 误码率分析
2.1 AWGN 信道
AWGN 信道下的 QPSK 信号调制误码率为:
2.2 Rayleigh 衰落信道
Rayleigh 衰落信道下的 QPSK 信号调制误码率为:
P_e = 1 - \frac{1}{2}\exp\left(-\frac{E_b}{N_0}\right)
2.3 Rician 衰落信道
Rician 衰落信道下的 QPSK 信号调制误码率为:
P_e = 1 - \frac{1}{2}\left(1+\frac{K}{1+K}\exp\left(-\frac{E_b}{N_0}\right)\right)\exp\left(-\frac{K}{1+K}\frac{E_b}{N_0}\right)
其中:
-
�K 为 Rician 因子,表示视距分量的强度
⛳️ 运行结果
本文分析了 AWGN 信道、Rayleigh 衰落信道和 Rician 衰落信道下 QPSK 信号调制的误码率性能。结果表明,AWGN 信道下的误码率最低,Rayleigh 衰落信道下的误码率最高,Rician 衰落信道下的误码率介于两者之间。这些结果对于无线通信系统的设计和优化至关重要。
🔗 参考文献
[1] 袁汉涛.基于随机矩阵和高斯混合模型的频谱感知算法研究[D].广东工业大学[2024-04-16].
[2] 任俊涛,王睦重,邵定蓉,等.Turbo-TCM在AWGN和Rayleigh衰落信道下的性能研究[J].中国航空学报(英文版), 2003, 16(2):86-90.
[3] 刘岚,王蓬.基于MATLAB的移动通信信道建模与仿真[J]. 2005.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类