✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
端点检测是语音识别和语音处理中的关键步骤,其目的是确定语音信号的起始和结束位置。本文介绍了一种基于自相关函数实现最大值语音信号端点检测的方法。该方法利用自相关函数的特性,在语音信号中寻找最大值点作为端点,并结合能量门限和语音活动检测等技术提高端点检测的准确率。
1. 引言
端点检测是语音识别和语音处理中的关键步骤,其目的是确定语音信号的起始和结束位置。准确的端点检测可以有效地提高语音识别的准确率和效率。近年来,随着语音识别技术的不断发展,端点检测方法也得到了广泛的研究。
传统的端点检测方法主要包括基于能量门限的方法、基于零交叉率的方法和基于自相关函数的方法等。其中,基于能量门限的方法简单易行,但容易受到噪声的影响;基于零交叉率的方法对噪声比较鲁棒,但容易受到语音信号本身特性的影响;基于自相关函数的方法可以有效地利用语音信号的周期性特征,具有较高的准确率。
本文介绍了一种基于自相关函数实现最大值语音信号端点检测的方法。该方法利用自相关函数的特性,在语音信号中寻找最大值点作为端点,并结合能量门限和语音活动检测等技术提高端点检测的准确率。
2. 自相关函数
自相关函数是信号处理中的一种重要工具,它可以用来分析信号的周期性特征。自相关函数的定义如下:
3. 基于自相关函数的端点检测方法
基于自相关函数的端点检测方法利用自相关函数的特性,在语音信号中寻找最大值点作为端点。具体步骤如下:
-
计算语音信号的自相关函数;
-
寻找自相关函数的最大值点;
-
将最大值点作为端点;
-
结合能量门限和语音活动检测等技术提高端点检测的准确率。
4. 实验结果
为了验证该方法的有效性,我们进行了实验。实验结果表明,该方法可以有效地检测语音信号的端点,并且具有较高的准确率。
5. 结论
本文介绍了一种基于自相关函数实现最大值语音信号端点检测的方法。该方法利用自相关函数的特性,在语音信号中寻找最大值点作为端点,并结合能量门限和语音活动检测等技术提高端点检测的准确率。实验结果表明,该方法可以有效地检测语音信号的端点,并且具有较高的准确率。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
t_train = categorical(T_train)';
t_test = categorical(T_test )';
%% 数据平铺
% 将数据平铺成1维数据只是一种处理方式
% 也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
% 但是应该始终和输入层数据结构保持一致
P_train = double(reshape(P_train, 12, 1, 1, M));
P_test = double(reshape(P_test , 12, 1, 1, N));
%% 数据格式转换
for i = 1 : M
p_train{i, 1} = P_train(:, :, 1, i);
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类