✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
智能优化算法近年来在解决各种复杂优化问题方面取得了显著进展。这些算法通常受到自然界中生物行为和现象的启发,例如遗传算法(GA)模拟了生物进化过程,粒子群优化算法(PSO)模拟了鸟群觅食行为。随着研究的不断深入,越来越多的受自然启发的优化算法不断涌现,其中科莫多巨蜥算法 (Komodo Mlipir Algorithm, KMA) 便是近年来备受关注的一种新型智能优化算法。
科莫多巨蜥算法简介
科莫多巨蜥 (Komodo dragon) 是世界上最大的蜥蜴,以其强烈的嗅觉、凶猛的捕猎方式和适应能力著称。KMA 算法正是借鉴了科莫多巨蜥的捕猎行为而设计的一种新型智能优化算法。它模拟了科莫多巨蜥在追踪猎物时的搜索策略,通过群体智能的方式进行全局优化。
算法原理
KMA 算法的基本原理如下:
-
种群初始化: 随机生成一群个体,每个个体代表一个潜在的解。
-
嗅觉搜索: 每个个体根据目标函数值进行嗅觉搜索,寻找更优的解。
-
追捕阶段: 每个个体根据嗅觉搜索的结果,追踪最佳个体,并根据追踪方向进行移动。
-
攻击阶段: 当个体接近最佳个体时,会尝试攻击,并根据攻击结果更新自己的位置。
-
更新最佳解: 算法不断迭代,更新最佳个体,直至满足终止条件。
算法特点
KMA 算法具有以下特点:
-
全局搜索能力强: KMA 算法模拟了科莫多巨蜥的广域搜索行为,能够在搜索空间中快速找到全局最优解。
-
局部搜索能力强: KMA 算法模拟了科莫多巨蜥的追踪和攻击行为,能够在局部范围内快速找到最优解。
-
参数少: KMA 算法的参数设置简单,易于实现。
-
适应性强: KMA 算法对不同的优化问题具有较强的适应性。
应用领域
KMA 算法在以下领域具有广泛的应用前景:
-
工程优化: 结构优化、参数优化等。
-
机器学习: 特征选择、模型训练等。
-
数据挖掘: 数据聚类、异常检测等。
-
图像处理: 图像分割、图像压缩等。
算法优缺点
KMA 算法具有以下优点:
-
全局搜索能力强
-
局部搜索能力强
-
参数少
-
适应性强
KMA 算法也存在以下缺点:
-
容易陷入局部最优
-
收敛速度可能较慢
结论
科莫多巨蜥算法 (KMA) 是一种新型的智能优化算法,其灵感来源于科莫多巨蜥的捕猎行为。KMA 算法具有全局搜索能力强、局部搜索能力强、参数少、适应性强等特点,在工程优化、机器学习、数据挖掘等领域具有广泛的应用前景。相信随着研究的不断深入,KMA 算法将会得到更广泛的应用和发展。
⛳️ 运行结果
🔗 参考文献
Applied Soft Computing, 2021, 108043, https://doi.org/10.1016/j.asoc.2021.108043
Updated 23 November 2021 by Prof. Dr. Suyanto, S.T., M.Sc.
School of Computing, Telkom University Jl. Telekomunikasi No 1 Terusan Buah Batu, Bandung 40257, Indonesia
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类