【集装箱调度】基于遗传算法实现考虑重量限制和时间约束的集装箱码头满载AGV自动化调度附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

集装箱码头作为现代物流体系的重要组成部分,其运营效率直接影响着港口的整体效率和经济效益。近年来,随着全球贸易的快速发展,集装箱吞吐量不断增长,对码头自动化水平提出了更高的要求。自动导向车(Automated Guided Vehicle,AGV)作为码头自动化技术的重要组成部分,在提升码头效率、降低人工成本方面发挥着重要作用。

然而,AGV的调度问题是一个复杂的优化问题,需要考虑各种约束条件,例如时间窗口、重量限制、路径冲突等。传统的调度方法往往难以有效处理这些约束条件,导致调度效率低下,无法充分发挥AGV的优势。

本文将探讨如何基于遗传算法实现考虑重量限制和时间约束的集装箱码头满载AGV自动化调度,并对算法的实现细节和优化策略进行深入分析。

1. 问题描述

在现代自动化集装箱码头中,自动化导向车 (AGV) 的高效调度对于提升整体运营效率至关重要。传统 AGV 调度策略往往忽略了空驶问题,导致资源浪费,影响码头吞吐量。为了解决这一问题,我们提出了一种新的 AGV 调度模型,旨在最大程度地减少 AGV 的空驶,并提高整体效率。

模型目标与策略

我们的模型旨在实现以下目标:

  1. 最小化 AGV 空驶: 确保每个 AGV 在将集装箱卸货到堆场后,立即装载另一个集装箱,然后返回码头,避免空驶。

  2. 安全高效的运输: 采用约束惩罚策略处理超重集装箱任务,保证运输安全。

  3. 考虑时间窗口: 针对码头和堆场,根据船舶靠泊时间和堆场操作要求,使用时间窗口定义每个集装箱的装卸顺序。提早到达需要等待,延误则会影响码头整体运营效率。

为了实现上述目标,我们的模型采用以下策略:

  1. 约束惩罚策略: 当遇到超重集装箱任务时,根据预设的惩罚机制,调整 AGV 行程,确保运输安全。

  2. 时间窗口约束: 将装卸任务分配到对应的时间窗口内,避免出现提前到达或延误的情况,优化整体流程。

  3. 遗传算法优化: 利用遗传算法 (GA) 和惩罚函数,解决模型问题,同时考虑 AGV 的重量约束和装卸任务的时间窗口约束。

模型细节

我们的模型主要包括以下步骤:

  1. 输入数据: 输入数据包括船舶靠泊时间、集装箱信息(重量、大小、目的地)、堆场布局、AGV 数量和载重量等。

  2. 模型构建: 根据输入数据,构建模型,定义目标函数(最小化 AGV 运行时间和空驶率)、约束条件(重量约束、时间窗口约束)和变量(AGV 行程、装卸顺序)。

  3. 遗传算法优化: 使用遗传算法对模型进行优化,寻找最优的 AGV 行程和装卸顺序,满足所有约束条件。

  4. 结果输出: 输出结果包括 AGV 的最佳调度方案,包括每个 AGV 的行驶路径、装卸时间等,以及相应的运行时间和空驶率。

优势

与传统的 AGV 调度策略相比,我们的模型具有以下优势:

  1. 减少空驶: 通过确保每个 AGV 在卸货后立即装载另一个集装箱,最大程度地减少了空驶,提高了 AGV 利用率。

  2. 提高效率: 通过优化 AGV 的调度方案,缩短了整体运行时间,提高了码头吞吐量。

  3. 安全保障: 采用约束惩罚策略处理超重集装箱任务,保证了运输安全。

  4. 灵活性和可扩展性: 模型可以根据不同的码头布局、船舶类型和运营要求进行调整,具有良好的灵活性和可扩展性。

2. 遗传算法概述

遗传算法 (Genetic Algorithm, GA) 是一种模拟生物进化过程的启发式搜索算法,通过模拟自然界中的选择、交叉和变异等机制,不断优化解空间,最终找到最优解或近似最优解。

遗传算法的基本流程包括:

  • **初始化种群:**随机生成多个初始解,构成初始种群。

  • **适应度评估:**根据问题的目标函数,评估每个个体的适应度值,衡量个体优劣程度。

  • **选择操作:**根据个体的适应度值,选择优良个体进行繁殖。

  • **交叉操作:**将两个优良个体进行交叉,生成新的个体。

  • **变异操作:**对部分个体进行随机变异,增加解空间的多样性。

  • **终止条件:**当满足预设的终止条件,如迭代次数达到上限或目标函数值达到预期,算法停止运行。

3. 基于遗传算法的AGV调度方案

3.1 编码方案

针对集装箱码头满载AGV自动化调度问题,可以采用以下编码方案:

  • **个体表示:**每个个体表示一个完整的调度方案,包含所有AGV的路线和集装箱分配信息。

  • **基因表示:**每个基因表示一个AGV的路线,路线由一系列节点构成,每个节点代表一个集装箱。

  • **染色体表示:**每个染色体包含所有AGV的路线,对应一个完整的调度方案。

3.2 适应度函数

适应度函数用于评估每个个体的优劣程度,通常由多个目标函数构成,例如:

  • **完成时间:**所有集装箱完成搬运的时间之和。

  • **路径长度:**所有AGV行驶的总距离之和。

  • **违反约束条件的程度:**例如,超出时间窗口或重量限制的程度。

根据具体情况,可以对目标函数进行加权,以突出某些目标。

3.3 选择操作

选择操作用于从种群中选择优良个体进行繁殖,常见的选择操作包括:

  • **轮盘赌选择:**根据个体适应度值,分配每个个体被选中的概率。

  • **锦标赛选择:**从种群中随机选取若干个体进行比较,选择适应度值最高的个体。

3.4 交叉操作

交叉操作将两个优良个体进行组合,生成新的个体,常见的交叉操作包括:

  • **单点交叉:**在染色体上随机选择一个交叉点,交换两个个体的基因片段。

  • **多点交叉:**在染色体上随机选择多个交叉点,交换两个个体的基因片段。

3.5 变异操作

变异操作对部分个体进行随机修改,增加解空间的多样性,常见的变异操作包括:

  • **基因替换:**随机选择一个基因,用另一个随机基因替换它。

  • **基因倒置:**随机选择一个基因片段,将其颠倒顺序。

4. 算法优化策略

为了提高遗传算法的性能,可以采用以下优化策略:

  • **精英保留策略:**将每次迭代中适应度值最高的个体直接保留到下一代,避免优秀个体丢失。

  • **自适应变异率:**根据算法的搜索进程,动态调整变异率,在前期保持较高的变异率,探索更广阔的解空间,在后期降低变异率,提高解的稳定性。

  • **局部搜索策略:**在遗传算法的迭代过程中,可以引入局部搜索策略,对当前最优解进行进一步优化。

  • **并行遗传算法:**利用多核处理器或分布式计算平台,将遗传算法并行化执行,提高算法效率。

5. 实验验证

为了验证该算法的有效性,可以进行模拟仿真实验,比较不同算法的性能,例如完成时间、路径长度、违反约束条件的程度等指标。

⛳️ 运行结果

第1辆车运输路径为:1->16->6->1->20->16->1

第2辆车运输路径为:1->5->20->1->10->7->1

第3辆车运输路径为:1->17->15->1

第4辆车运输路径为:1->2->8->1->15->15->1->12->9->1

第5辆车未运输集装箱

第6辆车运输路径为:1->18->17->1

第7辆车运输路径为:1->11->3->1

第8辆车未运输集装箱

第9辆车运输路径为:1->8->5->1->5->14->1

第10辆车未运输集装箱

平均总时间:784.9433

优化后种群平均适应度:273145.945

平均不满足满载限制任务点个数:0.025

平均不满足重量限制条件任务点个数:0.695

平均不满足岸桥最早时间的任务点个数:1.565

平均不满足岸桥最晚时间的任务点个数:1.23

平均不满足场桥最早时间的任务点个数:1.64

平均不满足场桥最晚时间的任务点个数:2.23

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计

  • 18
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
遗传算法多式联运路径优化是指利用遗传算法来优化多式联运路径的路径选择问题。下面是一个用MATLAB编写的完整代码示例: function [bestSolution, bestFitness] = geneticAlgorithm() % 遗传算法参数设置 populationSize = 50; % 种群大小 chromosomeLength = 10; % 染色体长度 crossoverRate = 0.8; % 交叉概率 mutationRate = 0.01; % 变异概率 tournamentSize = 5; % 锦标赛规模 maxGenerations = 100; % 最大迭代次数 % 初始化种群 population = zeros(populationSize, chromosomeLength); for i = 1:populationSize population(i,:) = randperm(chromosomeLength); end % 迭代优化 for generation = 1:maxGenerations % 计算适应度 fitness = evaluateFitness(population); % 选择(锦标赛选择) tournamentPopulation = zeros(populationSize, chromosomeLength); for i = 1:populationSize tournamentIndices = randperm(populationSize, tournamentSize); [~, bestIndex] = max(fitness(tournamentIndices)); tournamentPopulation(i,:) = population(tournamentIndices(bestIndex),:); end % 交叉(单点交叉) offspringPopulation = zeros(size(population)); for i = 1:2:populationSize parentIndices = randperm(populationSize, 2); if rand() < crossoverRate crossoverPoint = randi(chromosomeLength-1); offspringPopulation(i,:) = [tournamentPopulation(parentIndices(1),1:crossoverPoint), ... tournamentPopulation(parentIndices(2),crossoverPoint+1:end)]; offspringPopulation(i+1,:) = [tournamentPopulation(parentIndices(2),1:crossoverPoint), ... tournamentPopulation(parentIndices(1),crossoverPoint+1:end)]; else offspringPopulation(i,:) = tournamentPopulation(parentIndices(1),:); offspringPopulation(i+1,:) = tournamentPopulation(parentIndices(2),:); end end % 变异(位反转变异) for i = 1:populationSize if rand() < mutationRate mutatePoint = randi(chromosomeLength); offspringPopulation(i,mutatePoint) = randperm(chromosomeLength, 1); end end % 更新种群 population = offspringPopulation; end % 计算最佳解 fitness = evaluateFitness(population); [bestFitness, bestIndex] = max(fitness); bestSolution = population(bestIndex,:); end function fitness = evaluateFitness(population) fitness = zeros(size(population,1), 1); for i = 1:size(population,1) % 计算路径的适应度,根据业务需求自行定义 fitness(i) = someFunction(population(i,:)); end end function value = someFunction(chromosome) % 自定义的路径适应度计算方法,根据实际情况进行编写 end 在以上代码中,遗传算法的核心思路是首先初始化种群,并通过迭代不断优化种群,直到达到最大迭代次数。每一代中,首先根据适应度函数评估每个个体的适应度,然后通过锦标赛选择法选择优秀的个体,再使用单点交叉产生新的子代个体,并以一定概率进行位反转变异。最后,根据最大适应度值选择最佳解。适应度函数和路径适应度的具体计算方法应根据实际问题进行编写。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值