【无人机三维路径规划】基于星雀算法NOA实现复杂城市地形下无人机航路规划附matlab代码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

一、 引言

无人机在近年来得到了飞速发展,其在城市环境中的应用也越来越广泛。在城市环境中,复杂地形、建筑物阻挡、空中障碍物等因素对无人机航路规划提出了严峻的挑战。传统的路径规划算法往往难以应对城市环境的复杂性和动态性,因此,开发一种能够高效、安全地规划无人机航路的算法至关重要。

星雀算法(Noisy Optimization Algorithm, NOA)是一种新兴的启发式优化算法,其灵感来源于星雀在夜晚利用星光导航的行为。该算法具有全局搜索能力强、收敛速度快、抗噪声性能好等优点,非常适合解决复杂约束下的优化问题。

本文旨在将NOA算法应用于城市环境下无人机三维路径规划问题,提出一种基于NOA的无人机航路规划方法,以期实现无人机在复杂地形下安全、高效、可靠的飞行。

二、 问题描述

无人机三维路径规划问题可以描述为:在已知城市环境地图信息和无人机自身性能参数的情况下,寻找一条从起点到终点的安全、高效的无人机飞行路径,同时满足以下约束条件:

  • 飞行高度约束: 无人机飞行高度需满足城市建筑高度限制,避免撞击建筑物。

  • 障碍物避障约束: 无人机需避开所有已知的障碍物,包括建筑物、树木、电线杆等。

  • 安全飞行区域约束: 无人机飞行路径需位于指定的飞行区域内,例如禁飞区、限飞区等。

  • 能量消耗约束: 无人机飞行路径需要考虑能量消耗,尽量减少能量消耗,保证飞行任务能够顺利完成。

  • 飞行时间约束: 无人机飞行路径需要考虑飞行时间,尽量缩短飞行时间,提高飞行效率。

三、 基于NOA的无人机航路规划方法

本方法利用NOA算法对无人机三维路径进行优化,具体步骤如下:

  1. 地图数据预处理: 将城市环境地图信息转换为可供NOA算法处理的格式,并对地图数据进行预处理,例如对障碍物进行简化处理、对地形数据进行插值处理等。

  2. 路径初始化: 随机生成初始路径,该路径应满足基本的飞行约束,例如起点和终点位置、飞行高度等。

  3. 路径编码: 将初始路径编码为NOA算法能够处理的编码形式,例如将路径分解成多个航点,每个航点包含坐标信息和飞行高度信息。

  4. NOA算法优化: 利用NOA算法对路径编码进行优化,通过迭代搜索和评估,不断改进路径,使其满足所有的约束条件。

  5. 路径解码: 将优化后的路径编码解码回实际的飞行路径,并对路径进行平滑处理,使其更加平滑且易于执行。

  6. 路径可视化: 将最终规划的飞行路径进行可视化展示,以便于直观地理解和评估路径质量。

四、 NOA算法在路径规划中的应用

NOA算法在无人机三维路径规划中的应用主要体现在以下几个方面:

  • 全局搜索: NOA算法采用随机搜索策略,能够有效地探索整个搜索空间,避免陷入局部最优解。

  • 快速收敛: NOA算法的收敛速度很快,能够在较短时间内找到较为优化的路径。

  • 抗噪声: NOA算法对噪声具有较强的鲁棒性,能够有效地处理城市环境中不可避免的噪声信息。

  • 适应性强: NOA算法可以适应各种复杂的地形条件和约束条件,使其在城市环境中具有良好的应用价值。

五、 实验结果与分析

为了验证该方法的有效性,我们进行了仿真实验,在城市环境地图中设置了不同数量和类型的障碍物,并进行了不同起点和终点位置的路径规划测试。实验结果表明,该方法能够有效地规划出满足所有约束条件的安全、高效的飞行路径,相比于传统路径规划算法,该方法具有更高的效率和更优的路径质量。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值