【CNN回归预测】基于哈里斯鹰优化算法HHO实现风电数据预测多输入单输出附matlab代码

     ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

1. 引言

近年来,随着全球对清洁能源的需求不断增长,风能作为一种清洁可再生能源,其发展前景广阔。然而,风电的输出功率受风速、风向、气温等因素影响较大,具有强烈的随机性和间歇性,给电网运行带来了挑战。因此,准确预测风电输出功率对于优化电网运行、提高能源利用效率至关重要。

近年来,深度学习技术在风电预测领域取得了显著进展。其中,CNN 作为一种强大的深度学习模型,在时间序列预测领域展现出优异的性能。CNN 可以自动提取时间序列数据中的特征,并学习复杂的非线性关系,从而提高预测精度。然而,CNN 模型的性能高度依赖于其参数优化。传统的梯度下降法容易陷入局部最优,难以找到全局最优解。

为了克服传统梯度下降法的局限性,本文提出了一种基于 HHO 算法的 CNN 回归模型,用于风电数据预测。HHO 算法是一种新型的元启发式优化算法,其灵感来源于哈里斯鹰的捕食行为,具有较强的全局搜索能力和局部寻优能力。通过利用 HHO 算法优化 CNN 的权重和偏置,可以找到更优的模型参数,从而提高风电输出功率预测精度。

2. 相关工作

近年来,针对风电预测的研究工作主要集中在以下几个方面:

  • 传统方法: 统计模型 (如 ARIMA、ARMAX) 和机器学习模型 (如支持向量机、随机森林) 被广泛应用于风电预测。然而,这些方法往往难以捕捉时间序列数据中的复杂非线性关系。
  • 深度学习方法: 近年来,深度学习方法,特别是 CNN 和循环神经网络 (RNN),在风电预测领域展现出优异的性能。CNN 可以有效提取时间序列数据中的特征,RNN 可以学习时间序列数据中的时序依赖关系。
  • 优化算法: 为了提高 CNN 模型的预测精度,许多研究者将元启发式优化算法与 CNN 相结合,例如遗传算法 (GA)、粒子群优化算法 (PSO)、灰狼优化算法 (GWO) 等。

3. 哈里斯鹰优化算法 (HHO)

HHO 算法是一种新型的元启发式优化算法,其灵感来源于哈里斯鹰的捕食行为。HHO 算法主要包含以下几个步骤:

  • 初始化: 随机生成种群,每个个体代表一个候选解。
  • 探索阶段: 哈里斯鹰在探索阶段主要进行随机搜索,以寻找潜在的猎物位置。
  • 开发阶段: 哈里斯鹰在开发阶段则集中在猎物周围进行搜索,以找到最佳的捕食位置。
  • 更新位置: 通过更新个体的位置,不断迭代优化,直到找到最优解。

HHO 算法具有以下优点:

  • 全局搜索能力强: HHO 算法在探索阶段能够有效地探索整个搜索空间,避免陷入局部最优。
  • 局部寻优能力强: HHO 算法在开发阶段能够快速收敛到最优解,提高算法的效率。
  • 参数设置简单: HHO 算法的参数设置简单,易于实现。

4. 基于 HHO 的 CNN 回归模型

本文提出的基于 HHO 的 CNN 回归模型主要包括以下几个部分:

  • 输入层: 输入层接收风速、风向等多维特征信息。
  • 卷积层: 卷积层通过卷积操作提取时间序列数据中的特征。
  • 池化层: 池化层对特征图进行降维,减少计算量。
  • 全连接层: 全连接层将提取到的特征信息映射到输出空间。
  • 输出层: 输出层输出预测的风电输出功率值。

HHO 算法用于优化 CNN 的权重和偏置,以找到最优的模型参数。模型采用多输入单输出结构,利用风速、风向等多种特征信息进行预测,提高预测模型的泛化能力。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
2 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9  雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
哈里斯鹰优化算法(Harris Hawks Optimization, HHO)是一种基于鹰群行为的优化算法,用于解决优化问题。下面是一个简HHO算法的Python代码示例: ```python import random import numpy as np def hho_algorithm(objective_function, lb, ub, dim, max_iter, num_hawks): # 初始化鹰的位置和速度 hawks_position = np.zeros((num_hawks, dim)) hawks_velocity = np.zeros((num_hawks, dim)) hawks_fitness = np.zeros(num_hawks) # 初始化最优解和最优适应度 best_solution = np.zeros(dim) best_fitness = float("inf") # 随机初始化鹰的位置 for i in range(num_hawks): hawks_position[i] = lb + (ub - lb) * np.random.rand(dim) hawks_fitness[i] = objective_function(hawks_position[i]) # 更新最优解和最优适应度 if hawks_fitness[i] < best_fitness: best_solution = hawks_position[i] best_fitness = hawks_fitness[i] # 主循环 for t in range(max_iter): # 更新每只鹰的速度和位置 for i in range(num_hawks): # 随机选择两只鹰作为“追逐者”和“被追逐者” r1 = random.randint(0, num_hawks - 1) r2 = random.randint(0, num_hawks - 1) while r1 == i or r2 == i or r1 == r2: r1 = random.randint(0, num_hawks - 1) r2 = random.randint(0, num_hawks - 1) # 更新速度和位置 hawks_velocity[i] = hawks_velocity[i] + (hawks_position[r1] - hawks_position[i]) + (hawks_position[r2] - hawks_position[i]) hawks_position[i] = hawks_position[i] + hawks_velocity[i] # 边界处理 hawks_position[i] = np.clip(hawks_position[i], lb, ub) # 更新适应度 hawks_fitness[i] = objective_function(hawks_position[i]) # 更新最优解和最优适应度 if hawks_fitness[i] < best_fitness: best_solution = hawks_position[i] best_fitness = hawks_fitness[i] return best_solution, best_fitness ``` 在上述代码中,`objective_function`是待优化的目标函数,`lb`和`ub`是变量的上下界,`dim`是变量的维度,`max_iter`是最大迭代次数,`num_hawks`是鹰的数量。算法通过不断更新鹰的速度和位置来寻找最优解。 请注意,这只是一个简的示例代码,实际使用时可能需要根据具体问题进行适当的修改和调整。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值