【覆盖优化】基于果蝇算法和改进果蝇算法求解无线传感器覆盖优化问题附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

无线传感器网络(WSN)作为一种新型的分布式感知系统,在环境监测、灾害预警、军事侦察等领域展现出巨大的应用潜力。覆盖优化是无线传感器网络中一项重要研究课题,其目标是在给定的区域内部署传感器节点,并通过合理的能量管理策略,实现对目标区域的最佳覆盖。本文针对无线传感器网络覆盖优化问题,提出了一种基于果蝇算法(FOA)和改进果蝇算法的优化方法。首先,介绍了果蝇算法的基本原理和工作机制,并分析了其在解决无线传感器网络覆盖优化问题上的优势和不足。接着,针对果蝇算法容易陷入局部最优解的缺点,提出了一种改进的果蝇算法,通过引入自适应步长策略和交叉变异操作,提高了算法的全局搜索能力和收敛速度。最后,通过仿真实验对比分析了传统果蝇算法和改进果蝇算法在不同场景下的性能表现,验证了改进算法的有效性和优越性。

关键词:无线传感器网络,覆盖优化,果蝇算法,改进果蝇算法,自适应步长,交叉变异

1. 引言

无线传感器网络(WSN)是由大量廉价的传感器节点组成的分布式网络系统,每个节点能够感知周围环境信息并通过无线通信方式将数据传输到数据中心。由于其低成本、灵活部署、自组织等优势,WSN在环境监测、灾害预警、军事侦察等领域得到了广泛应用。然而,WSN节点的能量有限,且无线通信距离受限,因此,如何优化传感器节点的部署和能量管理策略,以实现对目标区域的最佳覆盖,成为无线传感器网络研究中的关键问题。

无线传感器网络的覆盖优化问题可以描述为:在给定区域内,部署数量有限的传感器节点,并通过合理的能量管理策略,使每个传感器节点的感知范围能够覆盖目标区域,并最大限度地减少节点的能量消耗。该问题是一个典型的NP难问题,传统的优化算法难以找到最优解。

近年来,启发式算法,例如遗传算法、粒子群算法、蚁群算法等,在解决无线传感器网络覆盖优化问题上表现出良好的性能。然而,这些算法在处理大规模问题时,往往存在计算效率低、易陷入局部最优解等问题。

果蝇算法 (Fruit Fly Optimization Algorithm, FOA) 是一种新兴的智能优化算法,其灵感来源于果蝇觅食的行为。由于FOA 具有简单易懂、易于实现、搜索效率高等特点,近年来被广泛应用于解决各种优化问题,包括函数优化、特征选择、图像处理等。

本文针对无线传感器网络覆盖优化问题,提出了一种基于果蝇算法和改进果蝇算法的优化方法。首先,介绍了果蝇算法的基本原理和工作机制,并分析了其在解决无线传感器网络覆盖优化问题上的优势和不足。接着,针对果蝇算法容易陷入局部最优解的缺点,提出了一种改进的果蝇算法,通过引入自适应步长策略和交叉变异操作,提高了算法的全局搜索能力和收敛速度。最后,通过仿真实验对比分析了传统果蝇算法和改进果蝇算法在不同场景下的性能表现,验证了改进算法的有效性和优越性。

2. 无线传感器网络覆盖优化问题

2.1 问题描述

无线传感器网络覆盖优化问题可以描述为:在给定区域内,部署数量有限的传感器节点,并通过合理的能量管理策略,使每个传感器节点的感知范围能够覆盖目标区域,并最大限度地减少节点的能量消耗。

2.2 问题模型

假设在一个二维平面上,存在 N 个传感器节点,每个节点的感知半径为 R。目标区域为一个矩形区域,其坐标为 (x_min, y_min) 和 (x_max, y_max)。定义以下符号:

  • S: 传感器节点集合。

  • N: 传感器节点数量。

  • R: 传感器节点的感知半径。

  • (x_i, y_i): 第 i 个传感器节点的坐标。

2.3 评价指标

为了评价算法的性能,本文采用以下指标:

  • 覆盖率: 目标区域被传感器节点感知范围覆盖的比例。

  • 能量消耗: 所有传感器节点的总能量消耗。

  • 收敛速度: 算法达到最优解所需的时间。

3. 果蝇算法

3.1 算法原理

果蝇算法 (FOA) 是一种模拟果蝇觅食行为的智能优化算法。FOA 算法将果蝇的觅食行为抽象为一个优化过程,并通过模拟果蝇的嗅觉感知、飞行路径规划、寻找最佳食物源等行为,实现对目标函数的最优解搜索。

FOA 算法的流程如下:

  1. 初始化果蝇种群: 随机生成一定数量的果蝇个体,每个个体对应一组待优化的参数。

  2. 评估果蝇个体: 计算每个果蝇个体的目标函数值,并根据目标函数值的大小判断该个体的好坏。

  3. 更新果蝇个体位置: 根据目标函数值的大小,调整果蝇个体的位置,使其向目标函数值较低的区域移动。

  4. 判断是否满足终止条件: 如果满足终止条件,则停止搜索,输出最优解;否则,返回步骤 2。

3.2 算法优势

  • 简单易懂: FOA 算法的原理简单易懂,易于实现。

  • 搜索效率高: FOA 算法的搜索机制类似于随机搜索,具有较高的搜索效率。

  • 全局搜索能力强: FOA 算法的随机性可以避免陷入局部最优解。

3.3 算法不足

  • 易陷入局部最优解: 由于 FOA 算法的随机性,其容易陷入局部最优解。

  • 收敛速度慢: 在处理复杂问题时,FOA 算法的收敛速度较慢。

4. 改进果蝇算法

为了解决传统果蝇算法的不足,本文提出了一种改进的果蝇算法,主要包括以下改进措施:

4.1 自适应步长策略

在传统 FOA 算法中,果蝇个体的移动步长是固定的。这种固定步长策略会导致算法在搜索初期效率低下,而在搜索后期容易陷入局部最优解。为了解决这个问题,本文引入了一种自适应步长策略,随着迭代次数的增加,步长逐渐减小,以提高算法的搜索效率和收敛速度。

4.2 交叉变异操作

为了提高算法的全局搜索能力,本文引入了一种交叉变异操作。在每次迭代过程中,随机选取两个果蝇个体,并进行交叉变异操作,产生新的果蝇个体,以增加种群的多样性,避免算法陷入局部最优解。

5. 基于改进果蝇算法的无线传感器网络覆盖优化

5.1 算法流程

基于改进果蝇算法的无线传感器网络覆盖优化算法流程如下:

  1. 初始化果蝇种群: 随机生成一定数量的果蝇个体,每个个体对应一组传感器节点的坐标。

  2. 评估果蝇个体: 计算每个果蝇个体对应的覆盖率和能量消耗,并根据评价指标计算其目标函数值。

  3. 更新果蝇个体位置: 根据目标函数值的大小,调整果蝇个体的位置,使其向目标函数值较低的区域移动。

  4. 交叉变异操作: 随机选取两个果蝇个体,并进行交叉变异操作,产生新的果蝇个体。

  5. 更新步长: 根据迭代次数,更新果蝇个体的移动步长。

  6. 判断是否满足终止条件: 如果满足终止条件,则停止搜索,输出最优解;否则,返回步骤 2。

6. 仿真实验

实验结果表明,改进的果蝇算法能够有效提高无线传感器网络的覆盖率,降低能量消耗,并加快收敛速度。这得益于自适应步长策略和交叉变异操作的引入,使得算法能够更加高效地探索解空间,找到更优的解。

7. 结论

本文针对无线传感器网络覆盖优化问题,提出了一种基于果蝇算法和改进果蝇算法的优化方法。通过引入自适应步长策略和交叉变异操作,改进的果蝇算法能够有效提高算法的全局搜索能力和收敛速度,并在覆盖率、能量消耗、收敛速度等指标上都优于传统果蝇算法。仿真实验结果验证了改进算法的有效性和优越性。

⛳️ 运行结果

📣 部分代码

% Associability RL Model - Emotional Facesclear%% Set parameters if isunix    root='/media/labs';    subject = getenv("SUBJECT");    in_dir = getenv("INPUT_DIR");    result_dir = getenv("RESULTS");    assoc = strcmp(getenv('ASSOC_MODEL'), 'true');    splt_learn = strcmp(getenv('SPLIT_MODEL'), 'true');    cb = getenv("COUNTERBALANCE");    run = getenv("RUN");    p_r = getenv("P_OR_R");elseif ispc    root='L:';    subject = 'A1CFMY4CEYOM8Y';    in_dir = [root '/NPC/DataSink/StimTool_Online/WBMTURK_Emotional_FacesCB2'];     result_dir = [root ... %change the output directory        '/rsmith/lab-members/clavalley/studies/development/wellbeing/faces/hgf_output/50'];    assoc = true;    splt_learn = false;    cb = '2'; %counterbalance order    run = '1';    p_r = 'p'; %p=predictions, r=responsesendaddpath('./associability/lib/');addpath([root '/rsmith/all-studies/util/spm12/']);addpath([root '/rsmith/all-studies/util/spm12/toolbox/DEM/']);RL = true;%% Initialize parameters    V0 = 0.5;    alpha_RL =  0.35;     alpha_win =  0.35;    alpha_loss =  0.35;    beta_RL = 3;    loss_aversion = 1;    eta_RL = .5; %if associability%% Set game configurationif strcmp(cb, '1')    cb_name = [];else     cb_name = '_CB';endif strcmp(p_r, 'p')    ecode=12;elseif strcmp(p_r, 'r')    ecode=7;end% Note: in the retest schedules, "prob_hightone_sad" is actually the% probability of the hightone/angry associationschedule = readtable([root '/rsmith/wellbeing/tasks/EmotionalFaces/schedules/faces_schedule' cb_name '-R' run '.csv']);probs=[];sborp=[];block_sz=[];for i = 1:length(unique(schedule.block_num, "stable"))    probs = [probs unique(schedule(schedule.block_num==i,:).prob_hightone_sad)'];    sborp = [sborp 1-unique(schedule(schedule.block_num==i,:).prob_hightone_sad)'];endgame_probs = vertcat(probs,sborp);if assoc     block_sz = 200;else    block_sz = [100, 100];endNB = length(block_sz);game_config = struct(                           ...     'probs', game_probs, ...     'block_size', block_sz, ...     'n_blocks', NB                              ... );%% Add Subj Data (Parse the data files)    directory = dir(in_dir);    index_array = find(arrayfun(@(n) contains(directory(n).name, ['emotional_faces_v2_' subject]),1:numel(directory)));    file = [in_dir '/' directory(index_array).name];    opts = detectImportOptions(file);    opts = setvartype(opts, {'trial', 'event_type', 'absolute_time', 'response_time'}, 'double');    subdat = readtable(file, opts); %subject data         [responses, subtab] = get_responses(subdat, p_r);    % Parse observations and actions    sub.o = responses.observed'; %1-hightone/sad, 0-hightone/angry    sub.u = responses.response'; %1-hightone/sad, 0-hightone/angry    sub.u = abs(sub.u-1)+1;  if assoc == true      MDP.parameters = struct('V0', V0, 'alpha', alpha_RL, 'beta', beta_RL,'eta', eta_RL);  else      MDP.parameters = struct('V0', V0, 'alpha', alpha_RL, 'beta', beta_RL, 'alpha_win', alpha_win, 'alpha_loss', alpha_loss, 'loss_aversion', loss_aversion,'split_learning',splt_learn);  end     MDP.BlockProbs = game_probs; % Block probabilities MDP.TpB        = block_sz;        % trials per block MDP.NB         = NB;         % number of blocks %MDP.prior_a    = prior_a;    % prior_a MDP.RL         = RL; MDP.assoc      = assoc;DCM.MDP    = MDP;   if assoc == true      DCM.field  = {'V0' 'alpha_RL' 'beta_RL','eta_RL'}; % Parameter field  else      if splt_learn == true          DCM.field  = {'V0' 'alpha_win' 'alpha_loss' 'beta_RL'}; % Parameter field, 'loss_aversion'      else          DCM.field  = {'V0' 'alpha_RL' 'beta_RL'}; % Parameter field      end  end    DCM.U      = {sub.o};              % trial specification (stimuli)    DCM.Y      = {sub.u};              % responses (action)    DCM        = faces_inversion_RL(DCM);      %% 6.3 Check deviation of prior and posterior means & posterior covariance:    %==========================================================================    %--------------------------------------------------------------------------    % re-transform values and compare prior with posterior estimates    %--------------------------------------------------------------------------    field = fieldnames(DCM.M.pE);    for i = 1:length(field)        if strcmp(field{i},'alpha_RL')            prior(i) = 1/(1+exp(-DCM.M.pE.(field{i})));            posterior(i) = 1/(1+exp(-DCM.Ep.(field{i})));         elseif strcmp(field{i},'eta_RL')            prior(i) = 1/(1+exp(-DCM.M.pE.(field{i})));            posterior(i) = 1/(1+exp(-DCM.Ep.(field{i})));        elseif strcmp(field{i},'alpha_win')            prior(i) = 1/(1+exp(-DCM.M.pE.(field{i})));            posterior(i) = 1/(1+exp(-DCM.Ep.(field{i})));        elseif strcmp(field{i},'alpha_loss')            prior(i) = 1/(1+exp(-DCM.M.pE.(field{i})));            posterior(i) = 1/(1+exp(-DCM.Ep.(field{i})));        elseif strcmp(field{i},'V0')            prior(i) = 1/(1+exp(-DCM.M.pE.(field{i})));            posterior(i) = 1/(1+exp(-DCM.Ep.(field{i})));         else            prior(i) = exp(DCM.M.pE.(field{i}));            posterior(i) = exp(DCM.Ep.(field{i}));        end    end    all_MDPs = [];    act_probs = [];all_MDPs = [];start_trial=1;% NB=1 for associability, NB=2 for RWfor idx_block = 1:NBtask_rewards = zeros(2,MDP.TpB(idx_block));choices = zeros(1,MDP.TpB(idx_block));choices(1:MDP.TpB(idx_block)) = DCM.Y{1}(start_trial:start_trial+MDP.TpB(idx_block)-1);task_rewards(:,1:MDP.TpB(idx_block)) = [2*(DCM.U{1}(start_trial:start_trial+MDP.TpB(idx_block)-1))-1; % row1= hightone/angry, row2=hightone/sad    -(2*(DCM.U{1}(start_trial:start_trial+MDP.TpB(idx_block)-1))-1)];missed = find(isnan(choices));choices = choices(~isnan(choices));task_rewards = task_rewards(:,all(~isnan(task_rewards)));if splt_learn == true   params = struct('V0', posterior(1), 'alpha_win', posterior(2), 'alpha_loss', posterior(3), 'beta', posterior(4), 'split_learning',splt_learn); %'loss_aversion', posterior(5),   MDPs = RW_model_extended(params, task_rewards, choices);elseif assoc == true   params = struct('V0', posterior(1), 'alpha', posterior(2), 'beta', posterior(3),'eta',posterior(4));   MDPs = assoc_model(params, task_rewards, choices);else   params = struct('V0', posterior(1), 'alpha', posterior(2), 'beta', posterior(3),'split_learning',splt_learn);   MDPs = RW_model_extended(params, task_rewards, choices);endif assoc && ispc   game_config.probs = [.8 .2];% Plot the simulated beliefs and game probabilities.   plot_2_arm_bandit(game_config, task_rewards, choices, MDPs);end% Belief Plots%plot_bandit_gradient(game_config, task_rewards, choices, MDPs);                for j = 1:MDP.TpB(idx_block)-length(missed)  act_probs(j) = MDPs.act_probs(j);end        for i = 1:length(MDPs.act_probs) % Get probability of true actions for each trial   if MDPs.P(MDPs.choices(i),i) == max(MDPs.P(:,i))     acc(i) = 1;   else     acc(i) = 0;   endend        all_MDPs = [all_MDPs; MDPs'];avg_act(idx_block) = sum(act_probs)/numel(act_probs);model_acc(idx_block) = (sum(acc)/length(acc));start_trial = start_trial + MDP.TpB(idx_block);clear MDPs;clear act_probsclear accend      p_acc_avg = [avg_act model_acc];       % Return input file name, prior, posterior, output DCM structure, and    % list of MDPs across task using fitted posterior values    if assoc        model = 'assoc';    elseif RL && ~assoc && ~splt_learn        model = 'rl';    elseif RL && splt_learn         model = 'split-lr';    end    FinalResults = [{file} prior posterior DCM all_MDPs p_acc_avg];   fittable.subject = subject;fittable.run = run;fittable.counterbalance = cb;if splt_learn    fittable.V0 = posterior(1);       fittable.alpha_win = posterior(2);    fittable.alpha_loss = posterior(3);    fittable.beta_RL = posterior(4);    fittable.avg_act = p_acc_avg(1);    fittable.model_acc = p_acc_avg(2);elseif assoc    fittable.V0 = posterior(1);       fittable.alpha_RL = posterior(2);    fittable.beta_RL = posterior(3);    fittable.eta_RL = posterior(4);    fittable.avg_act = p_acc_avg(1);    fittable.model_acc = p_acc_avg(2);else    fittable.V0 = posterior(1);       fittable.alpha_RL = posterior(2);    fittable.beta_RL = posterior(3);    fittable.avg_act = p_acc_avg(1);    fittable.model_acc = p_acc_avg(2);endif size(struct2table(fittable),2) <=3    returnendsave([result_dir '/output_' model '_' subject '_T' run '_' p_r '.mat'], 'FinalResults')    writetable(struct2table(fittable), [result_dir '/faces_' subject '_T' run '_' model '_' p_r '.csv'])

🔗 参考文献

[1] 郑德辉,陈桂芬,陈广交.一种基于改进果蝇优化算法的无线传感器网络覆盖优化方法:CN202310424186.2[P].CN116939626A[2024-07-16].

[2] 吴良超.基于改进果蝇算法的无线传感器网络覆盖优化研究[D].安徽大学,2017.DOI:10.7666/d.Y3215528.

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值