✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 引言
瓦斯是煤矿开采过程中的主要安全隐患,其突发性、剧烈性以及危害性给煤矿安全生产带来了巨大的挑战。准确预测瓦斯浓度是预防瓦斯事故的重要手段,近年来,基于机器学习的瓦斯浓度预测方法取得了显著进展,其中宽度学习神经网络 (Broad Learning System, BLS) 凭借其结构简单、训练速度快、泛化能力强等优点,成为瓦斯浓度预测领域的研究热点。然而,传统的BLS模型在处理高维非线性数据时,容易陷入局部最优,影响预测精度。
为了克服传统BLS模型的缺陷,本文提出了一种基于北方苍鹰优化算法 (Northern Goshawk Optimization, NGO) 优化宽度学习神经网络BLS的瓦斯浓度回归预测方法。NGO算法是一种新型的群体智能优化算法,具有全局搜索能力强、收敛速度快等优点,能够有效地优化BLS模型的参数,提高预测精度。
2. 瓦斯浓度预测模型
2.1 宽度学习神经网络BLS
宽度学习神经网络BLS是一种新型的前馈神经网络,其结构简单,仅包含输入层、增强层和输出层。增强层由多个特征节点构成,每个节点都是一个随机生成的线性模型,通过对输入数据进行非线性映射,增强特征空间的表达能力。输出层则通过对增强层节点输出的加权求和,得到预测结果。BLS模型的训练过程主要包括两个阶段:
- 特征节点生成阶段: 随机生成增强层节点,并通过线性模型对输入数据进行映射,得到节点输出。
- 权重计算阶段: 基于最小二乘法计算连接增强层节点和输出层节点的权重。
2.2 北方苍鹰优化算法NGO
北方苍鹰优化算法NGO是一种模拟北方苍鹰捕食行为的群体智能优化算法,其核心思想是利用北方苍鹰的搜索策略和学习机制来寻优。NGO算法的主要步骤如下:
- 初始化种群: 随机生成一组候选解,作为初始种群。
- 目标函数评估: 计算每个候选解的目标函数值。
- 搜索策略: 利用北方苍鹰的搜索策略,对种群进行更新。
- 学习机制: 利用北方苍鹰的学习机制,对种群进行学习。
- 终止条件判断: 当满足预设的终止条件,算法结束,输出最优解。
2.3 NGO-BLS模型
本文提出的NGO-BLS模型利用NGO算法优化BLS模型的参数,包括增强层节点的权重和偏差以及连接增强层节点和输出层节点的权重。具体步骤如下:
- 初始化NGO算法: 设置NGO算法的参数,包括种群规模、迭代次数等。
- 生成BLS模型: 随机生成BLS模型,包括增强层节点和输出层节点。
- 计算目标函数: 将BLS模型预测的瓦斯浓度与实际浓度进行比较,计算误差平方和作为目标函数。
- 优化BLS模型: 利用NGO算法对BLS模型的参数进行优化,以最小化目标函数。
- 预测瓦斯浓度: 使用优化后的BLS模型预测瓦斯浓度。
结论
本文提出了一种基于NGO优化BLS的瓦斯浓度回归预测方法。该方法利用NGO算法的全局搜索能力,有效地优化了BLS模型的参数,提高了瓦斯浓度预测精度。实验结果验证了NGO-BLS模型的有效性和优越性,为煤矿瓦斯安全预警提供了新的思路和方法。
未来研究方向
未来研究可以进一步探索以下方向:
- 改进NGO算法: 研究更有效的NGO算法变种,进一步提高算法的性能。
- 结合其他特征: 将更多影响瓦斯浓度的因素,例如地质构造、采掘活动等,纳入模型训练,提高预测精度。
- 在线学习: 研究在线学习方法,使模型能够根据实时数据不断更新,提高预测的及时性。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类