✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
**摘要:**轴承作为机械设备的核心部件,其故障会导致整个设备的性能下降甚至失效。因此,准确及时地诊断轴承故障至关重要。本文提出了一种基于开普勒优化算法(KOA)优化双向时间卷积神经网络(BiTCN)的轴承故障诊断方法。该方法利用KOA算法优化BiTCN模型的超参数,提高了模型的精度和泛化能力。通过对公开数据集的实验验证,该方法在轴承故障诊断方面取得了优异的性能,其准确率和召回率均高于其他方法。本文还提供了相应的Matlab代码,以便读者能够快速上手并应用该方法。
**关键词:**轴承故障诊断,双向时间卷积神经网络,开普勒优化算法,Matlab
一、引言
轴承作为机械设备中最常用的部件之一,其性能直接影响着整个设备的运行可靠性。轴承故障是导致机械设备故障的主要原因之一,一旦发生故障,将会造成巨大的经济损失和安全隐患。因此,准确及时地诊断轴承故障至关重要。
传统的轴承故障诊断方法主要依赖于专家经验和特征提取技术,例如振动信号分析、声发射信号分析等。然而,这些方法存在着以下缺点:
-
对专家经验依赖程度高,难以推广应用;
-
特征提取过程复杂,需要人工干预,效率较低;
-
对噪声和非平稳信号敏感,鲁棒性较差。
近年来,深度学习技术在各个领域取得了突破性进展,其强大的特征学习能力和非线性拟合能力为轴承故障诊断开辟了新的思路。其中,卷积神经网络(CNN)因其在图像识别、语音识别等领域取得的成功,引起了研究人员的广泛关注。
二、双向时间卷积神经网络BiTCN
双向时间卷积神经网络(BiTCN)是一种改进的卷积神经网络,它结合了单向卷积神经网络和双向循环神经网络的优势。BiTCN能够同时提取时间序列数据的前向和后向特征,从而提高模型对时间序列数据的学习能力。
2.1 BiTCN模型结构
BiTCN模型主要由以下几个部分组成:
-
**输入层:**接收时间序列数据。
-
**卷积层:**提取时间序列数据的局部特征。
-
**双向循环层:**提取时间序列数据的前向和后向特征。
-
**全连接层:**将特征映射到输出空间。
-
**输出层:**输出预测结果。
2.2 BiTCN模型的优点
-
能够提取时间序列数据的双向特征,提高了模型的学习能力;
-
具有较强的泛化能力,能够适应不同的数据类型和故障模式;
-
模型结构相对简单,易于训练和部署。
三、开普勒优化算法KOA
开普勒优化算法(KOA)是一种新型的元启发式优化算法,它模拟了开普勒行星运动规律。KOA算法具有以下优点:
-
全局搜索能力强,易于跳出局部最优;
-
参数较少,易于实现;
-
对噪声和非线性问题具有较强的鲁棒性。
3.1 KOA算法原理
KOA算法的基本思想是将优化问题转化为行星运动问题,通过模拟行星的运动轨迹来寻找最优解。算法中,每个行星代表一个可行解,其轨道参数对应于优化问题的参数。行星的运动轨迹受重力场的影响,而重力场的强度由目标函数决定。通过不断迭代,行星会逐渐趋向于目标函数值较低的区域,最终找到最优解。
3.2 KOA算法流程
KOA算法的流程如下:
-
初始化行星参数,例如位置、速度、质量等。
-
计算每个行星的重力场强度。
-
更新每个行星的位置和速度。
-
判断是否满足停止条件,如果满足则停止迭代,否则返回步骤2。
四、基于KOA优化的BiTCN轴承故障诊断方法
本研究提出了一种基于KOA优化BiTCN的轴承故障诊断方法。该方法利用KOA算法优化BiTCN模型的超参数,例如卷积核大小、卷积层数、学习率等,从而提高模型的精度和泛化能力。
4.1 方法流程
该方法的流程如下:
-
收集轴承振动数据,并将其划分为训练集和测试集。
-
使用KOA算法优化BiTCN模型的超参数。
-
使用优化后的BiTCN模型训练轴承故障诊断模型。
-
使用测试集评估模型的性能。
4.2 代码实现
以下为Matlab代码示例:
% 导入数据
data = load('bearing_data.mat');
train_data = data.train_data;
test_data = data.test_data;
% 定义BiTCN模型
BiTCN_model = BiTCN();
% 定义KOA优化器
KOA_optimizer = KOA();
% 设置KOA优化参数
KOA_optimizer.set_params('PopulationSize', 100, 'MaxIteration', 100);
% 使用KOA优化BiTCN模型
BiTCN_model = KOA_optimizer.optimize(BiTCN_model, train_data);
% 训练BiTCN模型
BiTCN_model.train(train_data);
% 评估模型性能
accuracy = BiTCN_model.evaluate(test_data);
% 显示结果
fprintf('Accuracy: %.4f\n', accuracy);
五、实验结果与分析
本文使用公开的轴承故障数据集对该方法进行了实验验证。实验结果表明,该方法在轴承故障诊断方面取得了优异的性能,其准确率和召回率均高于其他方法。
五、结论
本文提出了一种基于KOA优化BiTCN的轴承故障诊断方法,该方法利用KOA算法优化了BiTCN模型的超参数,提高了模型的精度和泛化能力。实验结果表明,该方法在轴承故障诊断方面取得了优异的性能。该方法为轴承故障诊断提供了新的思路和方法,具有重要的应用价值。
📣 部分代码
%% 数据分析
num_size = 0.7; % 训练集占数据集比例
outdim = 1; % 最后一列为输出
num_class = length(unique(res(:,end))); % 计算类别数
num_samples = size(res, 1); % 样本个数
kim = size(res, 2)-1; % 样本个数
res = res(randperm(num_samples), :); % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim; % 输入特征维度
⛳️ 运行结果
🔗 参考文献
[1] 刘震.智能BIT诊断方法研究及其在多电飞机电源系统中的应用[D].西北工业大学,2007.DOI:10.7666/d.y1189956.
[2] 温熙森,徐永成,易晓山.智能理论在BIT设计与故障诊断中的应用[J].国防科技大学学报, 1999, 21(1):5.DOI:10.1109/ISIC.1999.796628.
[3] 袁公萍,汤一平,韩旺明,等.基于深度卷积神经网络的车型识别方法[J].浙江大学学报:工学版, 2018, 52(4):9.DOI:10.3785/j.issn.1008-973X.2018.04.012.
[4] 朱家扬,蒋林,李远成,等.基于可重构阵列的CNN数据量化方法[J].计算机应用研究, 2024(004):041.
[5] 李大舟,于沛,高巍,等.基于社交媒体文本信息的金融时序预测[J].计算机工程与设计, 2021.DOI:10.16208/j.issn1000-7024.2021.08.018.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类