✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
外卖配送行业高速发展,对配送效率和服务质量提出了更高要求。带时间窗的车辆路径规划问题(VRPTW)是外卖配送路径规划的核心问题,其目标是在满足时间窗约束、车辆载重限制等条件下,寻找最优的配送路径,以最小化配送成本。本文基于天鹰算法 (AO) 提出了一种求解VRPTW的新方法,并利用Matlab编程实现该算法。该算法以总路径成本(包含服务客户数量、服务时间、载重、路径长度)作为目标函数,通过模拟天鹰的捕食行为,不断优化路径方案,最终得到最优解或近似最优解。本文详细阐述了AO算法的原理及应用,并通过仿真实验验证了该算法的有效性和高效性。
关键词: VRPTW,天鹰算法,外卖配送,路径规划,Matlab
1. 问题描述
带时间窗的车辆路径规划问题 (VRPTW) 是一个典型的组合优化问题,其目标是在满足时间窗约束、车辆载重限制等条件下,寻找最优的配送路径,以最小化配送成本。VRPTW 在外卖配送、物流运输、城市配送等领域具有广泛的应用。
在本问题中,我们考虑一个外卖配送场景,其中有一个配送中心和多个客户点,每个客户点都有一个时间窗,表示骑手必须在该时间窗内到达并完成配送。每个客户点都有一个需求,表示需要配送的物品数量。骑手需要从配送中心出发,将外卖送到所有客户点,最后返回配送中心。
2. 目标函数
本问题的目标函数是总路径成本,包含以下因素:
-
服务客户数量: 服务更多的客户意味着更大的收益,因此该项应尽可能大。
-
服务时间: 较短的服务时间意味着更高的效率,因此该项应尽可能小。
-
载重: 载重超过车辆限制将导致额外成本,因此该项应尽可能小。
-
路径长度: 较短的路径意味着更低的油耗和时间成本,因此该项应尽可能小。
3. 天鹰算法
天鹰算法 (AO) 是一种基于自然仿生的优化算法,其灵感来源于天鹰捕食猎物时的行为。AO 算法模拟了天鹰在搜索猎物时的全局搜索能力和在接近猎物时的局部搜索能力,并将其应用于优化问题的求解。
3.1 AO 算法原理
AO 算法主要包括以下步骤:
-
初始化种群: 随机生成一定数量的天鹰个体,每个个体代表一个可能的解。
-
评价个体: 计算每个天鹰个体的适应度值,即目标函数值。
-
更新个体: 根据适应度值,对每个个体进行更新。更新策略包括:
-
全局搜索: 利用Levy飞行机制,模拟天鹰在广阔区域内随机搜索猎物。
-
局部搜索: 利用高斯函数,模拟天鹰在接近猎物时进行精细搜索。
-
-
迭代更新: 重复步骤 2 和 3,直到满足停止条件,例如达到最大迭代次数或找到最优解。
3.2 AO 算法应用于 VRPTW
将 AO 算法应用于 VRPTW 问题,需要将每个天鹰个体编码为一个配送路线方案,并定义目标函数,即总路径成本。算法的具体步骤如下:
-
初始化种群: 随机生成一定数量的天鹰个体,每个个体代表一个配送路线方案。
-
评价个体: 计算每个天鹰个体的适应度值,即总路径成本。
-
更新个体: 利用 AO 算法的全局搜索和局部搜索机制,对每个天鹰个体进行更新,得到新的路线方案。
-
迭代更新: 重复步骤 2 和 3,直到满足停止条件。
4. Matlab 代码实现
4.1 问题参数设置
3 1 0 1 2 3 4 5 6 7;
4 2 1 0 1 2 3 4 5 6;
5 3 2 1 0 1 2 3 4 5;
6 4 3 2 1 0 1 2 3 4;
7 5 4 3 2 1 0 1 2 3;
8 6 5 4 3 2 1 0 1 2;
9 7 6 5 4 3 2 1 0 1;
10 8 7 6 5 4 3 2 1 0]; % 距离矩阵
4.2 天鹰算法实现
eagles(j, :) + levy_step;
new_fitness = calculate_fitness(new_eagle, distance, demand, time_window, capacity);
if new_fitness < fitness(j)
eagles(j, :) = new_eagle;
end
% 局部搜索
gaussian_step = randn(1, num_customers + 2) * gaussian_sigma;
new_eagle = eagles(j, :) + gaussian_step;
new_fitness = calculate_fitness(new_eagle, distance, demand, time_window, capacity);
if new_fitness < fitness(j)
eagles(j, :) = new_eagle;
end
end
end
% 输出最优解
best_eagle = eagles(find(fitness == min(fitness), 1), :);
best_fitness = min(fitness);
4.3 目标函数计算
% 更新载重
current_load = current_load + demand(customer_id);
% 检查时间窗约束
if current_time > time_window(customer_id, 2)
fitness = inf;
return;
end
% 检查载重约束
if current_load > capacity
fitness = inf;
return;
end
% 更新服务客户数量
num_customers_served = num_customers_served + 1;
end
% 计算返回配送中心的距离
total_distance = total_distance + distance(route(end - 1), route(end));
% 计算总路径成本
fitness = total_distance + total_service_time + current_load + (num_customers_served / length(demand));
end
5. 仿真实验
为了验证该算法的有效性,本文进行了仿真实验。实验设置了 10 个客户点,并使用不同的参数设置进行多次测试。实验结果表明,AO 算法能够有效地求解 VRPTW 问题,并获得较优的解。
6. 结论
本文提出了一种基于天鹰算法 (AO) 的 VRPTW 求解方法,并利用 Matlab 编程实现该算法。算法以总路径成本为目标函数,通过模拟天鹰的捕食行为,不断优化路径方案,最终得到最优解或近似最优解。仿真实验表明,该算法能够有效地求解 VRPTW 问题,并获得较优的解,为外卖配送路径规划提供了一种新的解决方案。
7. 未来研究方向
-
进一步改进天鹰算法,提高算法效率和性能。
-
将该算法应用于其他类型的路径规划问题,例如物流运输路径规划和城市配送路径规划。
-
研究考虑更复杂因素的 VRPTW 模型,例如车辆类型、配送时间限制、交通拥堵等。
⛳️ 运行结果
🔗 参考文献
[1] 苏銮.考虑客户重要度的软时间窗车辆路径优化问题研究[D].长安大学,2014.DOI:10.7666/d.D558412.
[2] 苏銮.考虑客户重要度的软时间窗车辆路径优化问题研究[D].长安大学,2015.
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制🌈
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类