【控制】基于模糊逻辑和强化学习的广义控制器GRLFC及其在倒立摆控制中的应用Matlab代码

 ✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。

🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室

🍊个人信条:格物致知。

🔥 内容介绍

本文将对名为GRLFC (Generalized Reinforcement Learning Fuzzy Logic Controller with Vague States) 的广义强化学习模糊逻辑控制器进行深入探讨。该系统利用强化学习算法来调整模糊逻辑控制器的行为,并能够处理模糊的传感器读数。其代码已开源,并以面向对象的方式实现,能够方便地应用于不同的控制系统,文中将重点关注其在倒立摆控制中的应用以及代码结构的解读。

GRLFC的核心在于将模糊逻辑控制器的优势与强化学习算法的适应能力相结合。传统的模糊逻辑控制器依赖于预先设定的模糊规则和隶属函数,其性能往往受限于规则的设计和参数的调整。而强化学习算法则能够通过与环境的交互学习最优策略,无需人工设计复杂的规则。GRLFC巧妙地将两者融合,利用强化学习算法自动优化模糊逻辑控制器的输出标签,从而提升控制器的性能和鲁棒性。

该系统能够处理模糊的传感器读数,这在许多实际应用中至关重要。现实世界的传感器数据往往包含噪声和不确定性,直接使用精确的数值进行控制可能导致系统性能下降甚至不稳定。GRLFC通过采用模糊逻辑,能够有效地处理这些模糊信息,提高系统的适应性和可靠性。

代码实现方面,GRLFC 采用面向对象编程方法,这使得代码具有良好的可扩展性和可重用性。其核心组件包括Actor和Critic两个部分,分别对应于控制器的行为和价值评估。Actor负责根据当前状态输出控制信号,而Critic则评估Actor的行为,并提供反馈信号用于更新Actor的参数。 ActorDef0.m 等文件定义了Actor和Critic的具体实现,用户可以根据实际需求修改这些文件来构建不同的模糊逻辑控制器。

文中提到的倒立摆控制系统是一个经典的非线性控制问题,其动态特性复杂,对控制器的要求很高。GRLFC 通过学习倒立摆的动态特性,能够有效地控制倒立摆保持平衡。倒立摆系统的动力学方程也包含在代码库中,这方便了用户理解和修改系统模型。 这使得GRLFC 不仅是一个通用的模糊逻辑控制器框架,也提供了一个完整的、可运行的倒立摆控制案例,便于使用者理解和学习。

研究论文https://www.researchgate.net/publication/249607885_Generalized_Reinforcement_Learning_Fuzzy_Control_with_Vague_States 对GRLFC 的性能进行了详细的评估和分析。该论文可能包含了与倒立摆控制相关的实验结果,以及与其他控制方法的比较,从而证明了GRLFC 的有效性和优势。

总结而言,GRLFC 是一种具有创新性的模糊逻辑控制器,它结合了模糊逻辑处理模糊信息的能力和强化学习算法的学习能力,并通过面向对象的方式实现了代码的高效性和可重用性。其在倒立摆控制中的应用案例充分展现了其强大的控制能力。该系统的开源代码和详细的论文,为研究人员和工程师提供了宝贵的学习和应用资源,为进一步研究和发展基于强化学习的模糊逻辑控制器提供了坚实的基础。未来的研究可以探索GRLFC在更复杂系统中的应用,以及改进其学习算法和模糊逻辑规则的优化方法,以进一步提升其性能和适用性。 例如,可以考虑引入更先进的强化学习算法,例如深度强化学习,来提高学习效率和控制精度。 此外,对隶属函数的设计和模糊规则的优化也是值得深入研究的方向。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

博客擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值