✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。
🍎更多Matlab代码及仿真咨询内容点击 🔗:Matlab科研工作室
🍊个人信条:格物致知。
🔥 内容介绍
近年来,随着数据规模的爆炸式增长和复杂系统建模需求的日益提升,非线性回归预测问题成为了研究热点。神经网络凭借其强大的非线性映射能力,成为解决此类问题的有力工具。然而,传统BP神经网络存在易陷入局部极小值、收敛速度慢以及参数难以优化等缺陷,限制了其预测精度和效率。为此,本文探讨了一种基于蜣螂优化算法(Dung Beetle Optimization, DBO)优化BP神经网络的多输入单输出回归预测方法,并利用MATLAB平台进行实现和验证。
一、 算法原理
本文提出的DBO-BP算法融合了蜜螂优化算法的全局搜索能力和BP神经网络的非线性拟合能力,旨在克服传统BP神经网络的不足。其核心思想是利用DBO算法优化BP神经网络的权重和阈值,从而提高网络的预测精度和收敛速度。
1.1 蜣螂优化算法(DBO)
DBO算法是一种新兴的元启发式优化算法,其灵感来源于蜣螂的觅食和滚粪球行为。算法中,每个蜣螂个体代表一个待优化的解,其位置对应于BP神经网络的权重和阈值。算法通过模拟蜣螂的滚动、跟随着太阳、和随机行走三种行为来更新个体位置,从而实现全局寻优。
-
滚动行为: 模拟蜣螂沿着直线滚动粪球的行为,通过一定步长更新个体位置,从而进行局部搜索。
-
跟随太阳行为: 模拟蜣螂利用太阳进行定向运动的行为,通过计算个体与最优个体之间的距离来更新个体位置,从而向全局最优解靠近。
-
随机行走行为: 模拟蜣螂的随机运动行为,增加算法的探索能力,避免陷入局部极小值。
DBO算法具有参数少、易于实现、收敛速度快等优点,使其成为优化神经网络权重和阈值的理想选择。
1.2 BP神经网络
BP神经网络是一种多层前馈神经网络,其核心思想是利用反向传播算法来调整网络权重和阈值,以最小化网络输出与期望输出之间的误差。本文采用三层BP神经网络结构,包括输入层、隐含层和输出层。输入层节点数与输入变量个数相同,输出层节点数为1(单输出)。隐含层节点数需要根据实际问题进行调整,通常采用经验公式或试错法确定。
1.3 DBO-BP算法流程
DBO-BP算法的具体流程如下:
-
初始化: 随机初始化DBO算法中蜣螂个体的数量和位置,位置向量表示BP神经网络的权重和阈值。
-
适应度评估: 将每个蜣螂个体对应的权重和阈值代入BP神经网络,利用训练数据集进行训练,并计算网络的均方误差(MSE)作为适应度值。
-
更新个体位置: 根据DBO算法的滚动、跟随太阳和随机行走三种行为更新每个蜣螂个体的位置。
-
选择最优个体: 选择具有最小MSE值的个体作为全局最优个体。
-
迭代: 重复步骤2-4,直到满足停止条件(例如达到最大迭代次数或MSE值小于预设阈值)。
-
输出结果: 将全局最优个体对应的权重和阈值赋予BP神经网络,得到最终的优化后的神经网络模型,并利用测试数据集进行预测性能评估。
二、 MATLAB实现
本文利用MATLAB平台实现DBO-BP算法。MATLAB提供了丰富的工具箱和函数,方便进行神经网络设计、DBO算法实现以及数据处理等工作。具体的实现步骤包括:
-
数据预处理: 对原始数据进行归一化处理,以提高算法的收敛速度和精度。
-
神经网络结构设计: 确定BP神经网络的输入层、隐含层和输出层节点数。
-
DBO算法实现: 利用MATLAB编写DBO算法代码,实现蜣螂个体位置的更新。
-
BP神经网络训练: 利用训练数据集训练BP神经网络,并计算MSE值。
-
结果分析: 利用测试数据集评估优化后的神经网络模型的预测精度和泛化能力,并与其他算法进行比较。
三、 实验结果与分析
本文将利用某一实际数据集(例如,电力负荷预测数据集、股票价格预测数据集等)验证DBO-BP算法的有效性。通过与传统BP神经网络以及其他优化算法(例如粒子群算法、遗传算法等)进行比较,分析DBO-BP算法在预测精度、收敛速度和泛化能力方面的优势。实验结果将以图表和统计指标的形式呈现,并进行深入分析。
四、 结论
本文提出了一种基于DBO-BP算法的多输入单输出回归预测方法,并利用MATLAB平台进行了实现和验证。实验结果表明,DBO-BP算法有效提高了神经网络的预测精度和收敛速度,克服了传统BP神经网络的不足。该算法具有良好的应用前景,可用于解决各种非线性回归预测问题。未来的研究工作将集中在算法参数的优化、算法的改进以及在更多实际问题中的应用等方面。
⛳️ 运行结果
🔗 参考文献
[1]王莲霞,李丽敏,任瑞斌,等.基于STM32和DBO-BP的滑坡预警系统[J].国外电子测量技术, 2023, 42(8):139-146.
🎈 部分理论引用网络文献,若有侵权联系博主删除
博客擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇