【雷达干扰】雷达有源间歇采样直接转发干扰、间歇采样重复转发干扰以及间歇采样循环转发干扰,切片组合干扰识别Matlab仿真

 ✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知,求助可私信。

🔥 内容介绍

雷达系统作为现代军事和民用领域的关键探测设备,其可靠性和有效性至关重要。然而,雷达系统也面临着各种干扰的威胁,其中有源干扰尤为突出。本文将重点探讨三种常见的雷达有源间歇采样干扰技术——直接转发干扰、重复转发干扰以及循环转发干扰,并深入分析其特性以及切片组合干扰的识别方法。

一、雷达有源间歇采样干扰技术

有源间歇采样干扰技术是一种利用干扰机接收雷达信号,经过一定处理后,再重新转发给雷达的干扰方式。其核心在于“间歇采样”,即干扰机并非持续转发雷达信号,而是选择性地对雷达信号进行采样,再进行处理和转发。这种间歇性使得干扰信号更难被雷达的抗干扰措施所识别和抑制。

  1. 直接转发干扰: 此类干扰最为简单直接,干扰机接收雷达信号后,经过简单的放大或整形处理,直接将采样到的雷达信号转发出去。其特点是干扰信号与雷达信号具有高度的相似性,在时域和频域上都难以区分。但由于其处理简单,干扰能量有限,且易受噪声影响,其有效性相对较低。

  2. 重复转发干扰: 与直接转发干扰不同,重复转发干扰会对采样到的雷达信号进行重复转发,即同一雷达信号采样片段会被多次转发。这种重复转发可以增强干扰信号的能量,提高干扰效果。但由于重复的信号片段具有相同的相位和频率特性,容易被雷达的脉冲重复频率(PRF)识别和抑制。因此,重复转发干扰通常会结合随机时间间隔或频率调制等技术,以提高其抗干扰能力。

  3. 循环转发干扰: 循环转发干扰则更为复杂,干扰机将多个采样到的雷达信号片段按照预设的顺序循环转发。这种方式可以有效模拟多个目标回波,增加雷达的处理负担,甚至造成雷达目标跟踪的混乱。由于其干扰信号序列具有周期性,可以通过信号处理技术,如自相关函数分析等,来识别其周期特性,从而进行有效的干扰抑制。

二、切片组合干扰

上述三种间歇采样干扰技术可以单独使用,也可以组合使用,形成更加复杂的切片组合干扰。例如,干扰机可以将直接转发、重复转发和循环转发三种干扰方式的信号片段按照一定的策略组合起来,形成一种混合干扰。这种切片组合干扰的复杂性大大提高,增加了雷达干扰的难度,也对雷达的抗干扰能力提出了更高的要求。切片组合干扰的策略多样,可能包含以下几种组合:

  • 混合型: 将不同类型的间歇采样干扰信号随机或按一定规则混合在一起转发。

  • 嵌套型: 将一种间歇采样干扰作为另一种间歇采样干扰的载体,例如将重复转发干扰嵌套在循环转发干扰中。

  • 分段型: 将不同类型的间歇采样干扰按时间段进行切换转发。

切片组合干扰的复杂性源于其信号的不确定性与多样性,使得传统的单一抗干扰方法难以有效应对。

三、切片组合干扰的识别方法

鉴别和有效抑制切片组合干扰是雷达抗干扰的关键。识别方法主要依赖于先进的信号处理技术和智能算法,例如:

  1. 时频分析: 通过短时傅里叶变换(STFT)、小波变换等技术分析干扰信号的时频特性,识别不同类型干扰信号的特征,例如直接转发干扰的单一频率特征,重复转发干扰的周期性特征,以及循环转发干扰的复杂时频结构。

  2. 统计特征分析: 提取干扰信号的统计特征,例如均值、方差、峭度、熵等,并利用机器学习算法,如支持向量机(SVM)、神经网络等,对不同类型的干扰进行分类识别。

  3. 循环谱分析: 针对循环转发干扰,利用循环谱分析技术可以有效识别其周期特性,进而对干扰进行识别和抑制。

  4. 特征融合: 将多种信号处理方法提取的特征进行融合,提高识别精度和鲁棒性。例如,可以将时频特征与统计特征结合起来,构建一个更全面的特征向量,用于干扰识别。

  5. 深度学习: 近年来,深度学习技术在雷达信号处理领域取得了显著进展,可以有效处理复杂的雷达干扰信号。通过训练深度神经网络,可以学习到不同类型干扰信号的复杂特征,并实现高精度的干扰识别和分类。

四、结论

雷达有源间歇采样干扰技术,特别是切片组合干扰,对雷达系统构成了严重的威胁。深入研究干扰机的干扰机制,开发先进的信号处理和智能识别算法,是提高雷达抗干扰能力的关键。未来的研究方向应该集中在更有效的干扰识别算法、更鲁棒的抗干扰技术以及更智能的干扰对抗策略的研究上,以保障雷达系统的稳定性和可靠性。 只有不断发展和完善雷达抗干扰技术,才能在日益复杂的电磁环境中确保雷达系统的有效运行。

📣 部分代码

%------------频谱弥散干扰(SMSP)--------%

% Fc 载频

% Tp 脉宽

% Tz 重复周期

%A = 2;

%K = B/tau; %调频斜率

dt = 1/Fs ; % 采样间隔

t_tau = (0:dt:tau-dt); 

N_tau = length(t_tau);

N_Tz = floor(Tz * Fs);

  

N_smsp = 4;

tao_smsp = tau/N_smsp; 

t_tao_smsp = (0:dt:tao_smsp-dt);

N_tao_smsp = length(t_tao_smsp);

K_smsp = B/tao_smsp;

%x_jd_5_base = sqrt(B*tau/N_tau)*exp(1i*pi*K_smsp*t_tao_smsp.^2);

x_jd_5 = zeros(1,N_tau);

for i = 1 : N_smsp

    x_jd_5(1,1+(i-1)*N_tao_smsp:i*N_tao_smsp) = x_jd_5(1,1+(i-1)*N_tao_smsp:i*N_tao_smsp) + ...

        A*exp(1i*pi*K_smsp*(t_tao_smsp).^2 + 1i * 2 * pi * (Fc -B/2)* t_tao_smsp);

end

s_jam_real = [x_jd_5, zeros(1,N_Tz-N_tau)];

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除

👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制

擅长领域:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值