✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知,求助可私信。
🔥 内容介绍
本文分析一段MATLAB代码,该代码模拟了一个简单的蜂窝网络系统,采用固定信道分配 (FCA) 策略,并评估不同用户负载下的呼叫阻塞率。代码虽简化,忽略了用户移动性、信道衰落、多用户干扰等因素,但仍能提供对FCA策略性能的基本认识。我们将详细解读代码逻辑,并分析其结果及局限性。
代码模拟了一个包含19个小区的蜂窝网络,每个小区具有相同的半径(归一化值为1)和21个可用的信道。每个小区的用户数在21到25之间变化,以此模拟不同的用户负载。仿真时间为7200秒,每10秒进行一次状态更新,检查是否有呼叫接入或挂断。呼叫到达率服从泊松分布,平均到达率为20次/小时;呼叫保持时间服从指数分布,平均保持时间为1200秒。代码的核心在于模拟呼叫接入过程,判断是否有空闲信道,若无空闲信道则呼叫被阻塞。
代码首先初始化基站和用户的位置信息。baset
函数生成基站坐标,cellmesh
函数生成用户可能出现的位置信息。userinfo
三维数组存储每个用户的信息,包括坐标、通话状态、通话时间和分配的信道。仿真循环中,首先检查是否有通话结束,然后检查是否有新的呼叫到达。新的呼叫到达概率由泊松分布决定。如果一个新的呼叫到达,代码会尝试为其分配一个空闲信道。如果所有信道都被占用,则该呼叫被阻塞。holdtime
函数用于生成指数分布的呼叫保持时间。
仿真结束后,代码计算并输出总呼叫次数、阻塞呼叫次数和阻塞率。通过改变每个小区的用户数,可以得到不同用户负载下的阻塞率。最后,代码绘制了实际阻塞率与理论阻塞率(Erlang B 公式计算)随业务量的变化曲线。
代码逻辑分析:
代码的主要逻辑清晰易懂,通过嵌套循环遍历每个小区和每个用户,模拟呼叫的到达和结束。泊松分布和指数分布的应用符合实际通信系统的特点。FCA策略的实现简单直接,通过检查信道是否可用进行信道分配。然而,该代码的简化假设也限制了其适用性。
结果分析与局限性:
代码生成的图表展示了实际阻塞率和理论阻塞率随业务量的关系。实际阻塞率应该与理论阻塞率(Erlang B 公式计算结果)相近,但由于仿真本身的随机性,可能存在一定的偏差。 偏差大小取决于仿真的时间长度和用户的数量。 更长的仿真时间和更多的用户数量可以减小偏差。
该代码的显著局限性在于其简化假设:
-
忽略用户移动性: 用户在小区间的移动会引起信道切换,这在实际系统中是不可避免的,会影响信道利用率和阻塞率。
-
忽略信道衰落和干扰: 实际无线信道存在衰落和干扰,这会影响信道质量和可用性。代码中假设所有信道质量相同,且没有干扰。
-
忽略小区间干扰: 代码只考虑小区内干扰,忽略了来自邻小区的干扰。
-
简单的信道分配策略: FCA策略简单易实现,但效率较低,容易造成信道浪费。更先进的信道分配策略,如动态信道分配 (DCA),能提高信道利用率,降低阻塞率。
改进建议:
为了更准确地模拟实际蜂窝网络,需要改进该代码,考虑以下因素:
-
引入用户移动模型: 例如随机游走模型或更复杂的移动模型,模拟用户在小区间的移动。
-
引入信道衰落模型: 例如瑞利衰落或莱斯衰落模型,模拟信道衰落对信号质量的影响。
-
引入干扰模型: 考虑小区内和小区间的干扰,更准确地模拟信道质量。
-
采用更先进的信道分配策略: 例如动态信道分配 (DCA),提高信道利用率和系统性能。
-
**考虑更复杂的呼叫模型:**例如,考虑不同类型的呼叫(例如语音和数据呼叫),以及优先级。
总之,这段代码提供了一个简单的蜂窝网络仿真模型,可以帮助理解FCA信道分配策略的基本原理和性能。然而,为了更准确地反映实际情况,需要对该模型进行改进,考虑更复杂的因素。 未来的研究可以着重于引入上述改进建议,以构建更完善的蜂窝网络仿真模型。
📣 部分代码
%生成用户通话时间(服从指数分布)
para=rand;
while para>=1
para=rand;
end
x=ht.*(-log(1-para));
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🎁 私信完整代码和数据获取及论文数模仿真定制
擅长领域:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇