✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
在现代信号处理领域,小波变换作为傅里叶变换的有效补充,凭借其时频局部化的优良特性,在非平稳信号分析中扮演着至关重要的角色。特别是连续小波变换 (Continuous Wavelet Transform, CWT),它通过将一维信号与一系列连续变化的母小波进行卷积,获取信号在不同尺度和时间上的信息,从而实现精细的时频分析。然而,CWT 的结果本身通常是一组系数,不易于直观理解。将这些 CWT 系数转换为二维图像,则可以有效地利用图像处理的工具和方法,进一步分析和理解信号的特征,挖掘隐藏在数据背后的信息。本文旨在探讨将一维数据通过 CWT 转化为二维图像的多种方法,并分析其各自的特点和适用场景。
CWT 的核心思想是将待分析信号与一个被称为“母小波”的函数进行卷积。母小波函数具有有限的能量和快速衰减的特性,通过缩放和平移操作,生成一系列不同尺度和位置的小波函数。 CWT 的公式如下:
𝑊(𝑎,𝑏)=1𝑎∫−∞∞𝑥(𝑡)𝜓∗(𝑡−𝑏𝑎)𝑑𝑡
通过改变 𝑎a 和 𝑏b 的值,我们可以得到一系列的 CWT 系数,这些系数构成了一个二维的时频图,也被称为小波系数图 (Scalogram)。这就是一维数据转换成二维图像的基础。然而,如何将这些 CWT 系数有效地呈现为图像,并最大限度地保留和凸显信号的特征,则是接下来需要重点讨论的问题。
1. 直接映射法:振幅/能量映射
最简单直接的方法是将 CWT 系数的振幅或能量值直接映射到像素的灰度值或颜色值上。具体来说,我们可以将 𝑎a 作为图像的纵坐标 (通常取对数,以便更好地观察小尺度信息),将 𝑏b 作为横坐标。每个像素点的灰度值或颜色值则由对应尺度和位置的 CWT 系数的振幅或能量决定。
优点:
-
实现简单,计算量小。
-
能够直接反映信号在不同尺度和位置上的强度分布。
缺点:
-
对噪声敏感,尤其是在振幅映射的情况下。
-
细节可能不够清晰,对比度不高。
-
难以区分正负振幅,可能会丢失部分信息。
2. 相位编码法:将相位信息融入图像
仅仅利用振幅或能量信息可能会丢失重要的相位信息。 相位信息在信号处理中,尤其是在图像处理中,扮演着至关重要的角色。因此,可以尝试将 CWT 的相位信息编码到图像中。
优点:
-
能够保留和显示信号的相位信息。
-
可以使用颜色信息来区分不同的相位区域,增强图像的可视化效果。
缺点:
-
相位信息的解释相对复杂,需要对相位谱有深入的理解。
-
颜色选择需要谨慎,避免产生混淆。
-
在低振幅区域,相位信息可能不稳定,造成颜色噪声。
3. 脊线提取与图像叠加:聚焦重要特征
CWT 的脊线 (ridges) 是指在小波系数图中,局部最大值点连接起来的曲线。 脊线代表了信号中频率随时间变化的轨迹,对应于信号中的主要成分。 提取 CWT 的脊线,并将这些脊线叠加到图像上,可以有效地聚焦信号的重要特征。
具体实现方法如下:
-
计算 CWT 系数。
-
在每个尺度上,找到局部最大值点。
-
将不同尺度上的局部最大值点连接起来,形成脊线。
-
将脊线叠加到 CWT 系数图上,可以使用不同的颜色或亮度来表示不同的脊线。
优点:
-
能够有效地聚焦信号的主要成分。
-
减少了冗余信息,提高了图像的清晰度。
-
便于观察信号的频率随时间变化的情况。
缺点:
-
脊线提取算法的复杂性较高。
-
对于复杂信号,脊线的提取可能不准确。
-
可能会丢失一些非主要成分的信息。
4. 基于机器学习的方法:自适应图像增强
近年来,随着机器学习技术的发展,可以利用机器学习算法来自动增强 CWT 系数图像。 例如,可以使用卷积神经网络 (Convolutional Neural Network, CNN) 来学习 CWT 系数与信号特征之间的映射关系。
具体方法如下:
-
构建一个包含大量训练样本的数据集,每个样本包括一维信号和其对应的 CWT 系数图像,并对信号的特征进行标注(例如,信号类型、频率范围等)。
-
设计一个 CNN 模型,输入为 CWT 系数图像,输出为信号的特征。
-
训练 CNN 模型,使其能够根据 CWT 系数图像预测信号的特征。
-
利用训练好的 CNN 模型,可以对新的 CWT 系数图像进行处理,生成增强后的图像,从而更好地凸显信号的特征。
⛳️ 运行结果
🔗 参考文献
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇