✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
异步电机在工业生产中扮演着至关重要的角色,其稳定可靠运行直接关系到生产效率与安全。断裂笼条是异步电机常见的故障之一,其发生不仅会导致电机性能下降,严重时更可能引发电机烧毁等恶性事故。传统的故障诊断方法依赖于人工经验或单一传感器数据,诊断准确性和实时性难以满足现代工业需求。随着大数据、人工智能和传感器技术的快速发展,基于多通道数据驱动的故障诊断方法展现出巨大的潜力。本文深入探讨了基于多通道数据驱动的稀疏包络谱分析在断裂笼条故障诊断中的应用。首先,阐述了断裂笼条故障的机理及其对电机振动信号和电流信号的影响。接着,详细介绍了多通道数据采集与预处理技术。然后,重点阐述了稀疏分解原理及其在包络谱分析中的优势,并通过构建基于多通道数据的稀疏包络谱分析模型,实现了对断裂笼条故障特征的有效提取。最后,通过实验验证了该方法在不同负载和故障程度下的诊断有效性。研究结果表明,基于多通道数据驱动的稀疏包络谱分析方法能够有效提升断裂笼条故障诊断的准确性和可靠性,为异步电机状态监测与故障预测提供了新的思路。
关键词: 断裂笼条;故障诊断;多通道数据;稀疏分解;包络谱分析;异步电机
1. 引言
异步电机凭借其结构简单、坚固耐用、维护方便等优点,在工业领域得到了广泛应用。然而,在长时间运行过程中,异步电机内部零件会由于各种原因发生故障,其中断裂笼条是鼠笼式异步电机最常见的故障类型之一。断裂笼条的产生,通常是由于制造缺陷、材料老化、过载运行、启动次数频繁以及环境因素等原因导致转子笼条断裂。断裂的笼条不仅会导致电机转矩脉动增大、效率降低、发热加剧,更会引发转子绕组电流分布不均,进而诱发电磁振动。严重时,断裂的笼条可能飞出或与定子发生摩擦,导致更严重的损坏甚至电机报废。因此,对异步电机断裂笼条进行准确、及时、有效的诊断,对于保障设备安全运行、降低维修成本、提高生产效率具有重要意义。
传统的断裂笼条故障诊断方法主要包括基于电流信号的傅里叶变换分析、基于振动信号的时域或频域分析等。基于电流信号分析通常关注电流频谱中与转子故障相关的边频带成分,如 𝑓±2𝑠𝑓f±2sf,其中 𝑓f 为电源频率,𝑠s 为滑差。然而,在低负载或轻微故障情况下,这些故障特征频率成分可能被工频及其谐波、噪声等淹没,导致诊断困难。基于振动信号分析则通常分析振动信号的时域统计特征(如均方根、峰峰值)或频域特征(如故障特征频率)。然而,电机的振动是多个部件耦合作用的结果,故障特征容易受到其他机械振动源的干扰,尤其是在复杂工况下,单一振动传感器的信息可能不足以准确诊断故障。
近年来,随着传感器技术、通信技术和数据处理技术的飞速发展,基于多通道数据驱动的故障诊断方法逐渐成为研究热点。通过采集电机不同位置、不同类型的信号(如电流、振动、温度、声发射等),可以获取更全面、更丰富的信息,从而提高故障诊断的准确性和鲁棒性。同时,人工智能和机器学习算法的引入,为从海量多通道数据中提取有效故障特征提供了强大的工具。
本文将重点关注基于多通道数据驱动的稀疏包络谱分析在断裂笼条故障诊断中的应用。包络谱分析是一种有效的非线性信号处理方法,特别适用于诊断旋转机械的轴承故障和齿轮故障。然而,对于断裂笼条故障,其产生的冲击信号并非如轴承滚子通过缺陷时产生的周期性冲击,而是由于转子磁场分布不均导致的电磁力周期性脉动。传统的包络谱分析可能无法有效捕捉这些周期性脉动带来的微弱冲击特征。稀疏分解作为一种信号处理技术,能够将信号分解为少量“原子”的线性组合,其中这些原子来自于一个过完备字典。通过利用信号的稀疏性,可以有效地滤除噪声,突出信号中的关键信息。将稀疏分解应用于包络谱分析,有望增强对断裂笼条故障引起的微弱周期性脉动的特征提取能力。
2. 断裂笼条故障机理及其对电机信号的影响
断裂笼条故障的本质在于转子电流分布的不均匀。正常运行时,转子笼条中的电流分布是均匀的,产生的磁场也是均匀的。当一根或多根笼条断裂时,电流被迫从断裂的笼条转移到相邻的笼条和端环,导致断裂笼条周围的电流密度急剧增加,而断裂笼条处电流为零。这种不均匀的电流分布会产生不均匀的磁场,进而导致转子产生不对称的磁拉力。这种不对称的磁拉力会随着转子的旋转而周期性地作用于定子,产生振动。
具体而言,断裂笼条故障对电机信号的影响主要体现在以下几个方面:
- 电流信号:
断裂笼条导致转子电流分布不均,会在定子电流中产生与转子故障相关的边频带成分。对于单根笼条断裂,主要产生 𝑓±2𝑠𝑓f±2sf 的边频带。多根笼条断裂或断裂程度加重,会产生更复杂的边频带成分。然而,在轻载或故障初期,这些边频带能量较低,容易被噪声淹没。
- 振动信号:
不对称的磁拉力导致电机产生周期性振动。振动信号中会出现与转子旋转频率相关的故障特征频率及其谐波,以及与故障相关的调制频率。例如,转子旋转频率 𝑓𝑟=𝑓(1−𝑠)fr=f(1−s),故障特征频率可能包括 $2sf$ 及其倍数。同时,故障引起的电磁力脉动会调制振动信号的幅值或频率。
- 其他信号:
断裂笼条引起的局部过热可能导致温度升高;笼条断裂时的放电或接触不良可能产生声发射信号;转矩脉动增大可能影响转速信号等。
多通道数据采集可以通过布置不同类型的传感器,从不同维度获取电机运行信息。例如,在电机轴承座、机壳等位置布置振动传感器,监测不同方向的振动;采集定子三相电流信号;布置温度传感器监测关键部位温度;甚至可以考虑声发射传感器等。通过整合这些多源信息,可以更全面地反映电机的运行状态,为准确诊断提供更丰富的数据基础。
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇