✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 多源动态最优潮流问题概述
-
多源动态最优潮流考虑了多种类型的电源,如传统的火力发电、水力发电,以及越来越多的可再生能源发电,如风力发电、太阳能发电等。同时,它还考虑了系统在不同时刻的动态变化,包括负荷的波动、电源出力的不确定性等。其目标是在满足系统运行约束的条件下,优化系统的潮流分布,使系统的运行成本最低、效率最高,同时保证系统的安全性和可靠性。
2. 分布鲁棒优化方法原理
-
分布鲁棒优化是一种处理不确定性问题的优化方法,它不依赖于对不确定因素的精确概率分布假设,而是通过构建一个不确定集合来描述不确定性。在多源动态最优潮流问题中,可再生能源出力的不确定性是一个关键因素。分布鲁棒优化方法通过考虑不确定参数在一定集合内的所有可能取值,来寻找一个在各种可能情况下都能保证一定性能的最优解,从而提高系统对不确定性的鲁棒性。
3. 在 IEEE118 节点系统中的模型建立
- 目标函数
:通常以系统的发电成本、网损成本等作为优化目标。例如,发电成本可以表示为各发电机出力的函数,网损成本可以通过潮流计算得到的网损功率与单位网损成本的乘积来表示。对于 IEEE118 节点系统,目标函数可以写成:
4. 求解算法
-
由于多源动态最优潮流的分布鲁棒优化模型通常是非线性、非凸的,求解较为复杂。常用的求解算法有:
- 内点法
:通过将不等式约束转化为障碍函数,将原问题转化为一系列无约束优化问题进行求解。内点法具有收敛速度快、精度高等优点,但对于大规模问题,计算量较大。
- 智能算法
:如遗传算法、粒子群算法等。这些算法通过模拟生物进化或群体智能行为来寻找最优解,具有全局搜索能力强、对问题的适应性好等优点,但收敛速度相对较慢,且结果可能存在一定的随机性。
- 内点法
5. 算例分析
-
在 IEEE118 节点系统上进行仿真实验,设置不同的可再生能源接入场景和负荷变化情况,对比采用分布鲁棒优化方法和传统优化方法的结果。例如,分析系统在不同置信水平下的最优潮流分布、发电成本、网损等指标的变化情况,以及系统对可再生能源出力不确定性的鲁棒性表现。通过算例分析,可以验证分布鲁棒优化方法在多源动态最优潮流问题中的有效性和优越性。
6. 结论与展望
-
多源动态最优潮流的分布鲁棒优化方法为解决电力系统中可再生能源接入带来的不确定性问题提供了一种有效的途径。通过在 IEEE118 节点系统中的研究,可以发现该方法能够在保证系统安全性和可靠性的前提下,优化系统的运行成本,提高系统对不确定性的适应能力。未来的研究可以进一步考虑更复杂的系统模型和不确定性因素,改进求解算法,提高计算效率,以更好地适应实际电力系统的运行需求
⛳️ 运行结果
🔗 参考文献
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇