Tensorboard学习(2.绘制image图像)

本文详细讲解了如何使用`add_image`函数在Tensorboard中展示图片,涉及代码示例,格式要求,以及解决PIL版本问题的方法。
摘要由CSDN通过智能技术生成

利用Tensorboard,绘制image图像进行展示

1.代码参考:

from torch.utils.tensorboard import SummaryWriter
from PIL import Image
import numpy as np

# 记录图像函数add_image。
writer = SummaryWriter("test_image")

img_path = "D:\深度学习资料\\032Pytorch\PyTorch 教程-小土堆\数据集\hymenoptera_data\hymenoptera_data\\train\\ants\\0013035.jpg"
img = Image.open(img_path)

# writer数据格式要求,需要对图像进行格式转换
img_np = np.array(img)

writer.add_image("image", img_np, 1, dataformats="HWC")

writer.close()

2. writer.add_image的格式要求

① 图像数据格式(opencv、numpy等)

② 图像维度(Height*wide*Channel需要根据需要调整)

3.代码运行后生成文件夹“test_image”,如下:

4. 在cmd命令行中进行展示,命令为:

tensorboard --logdir=test_image

结果展示为:

点击链接:

注:有的时候在绘图的时候会出现,以下bug:

原因为:PIL版本过高,不合适。重新安装低版本的Pillow即可。如:

再次运行,即可成功运行,并生成图像。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI小学僧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值