使用LangChain构建基于RAG技术的智能问答系统:深入解析与实战指南
近年来,随着大语言模型(LLMs)的迅猛发展,基于LLM的复杂问答系统(Q&A Chatbot)逐渐成为人工智能领域的热门应用之一。这类应用程序可以基于特定的文本信息源回答用户提出的问题,在实际应用中非常有价值。而实现这些强大功能的核心技术之一,便是检索增强生成(Retrieval Augmented Generation,RAG)。
在这篇博客文章中,我们将深入探讨如何使用LangChain框架构建一个简单的基于文本数据源的问答系统。在此过程中,我们将解析典型的问答系统架构,探讨更高级的问答技术,并演示LangSmith如何帮助追踪和理解我们的应用。此外,本文还将展示如何引入对话历史,使得问答系统能实现智能化的上下文记忆功能。无论你是对基础检索已经有所了解,还是想深入了解RAG的各种检索技术,这篇文章都将为你提供详尽的指南。
什么是RAG?
RAG是一种通过外部数据增强LLM知识的方法。虽然LLM可以在广泛的主题上进行推理,但它们的知识通常局限于训练期间所接触到的公开数据,且无法涵盖模型训练后产生的新信息。为了构建可以处理私人数据或应对模型知识截止日期之后数据的AI应用&#x