1003 Emergency PAT甲级真题 使用堆优化的Dijkstra算法

题目详情 - 1003 Emergency (pintia.cn)

 题目解释:

        n个城市之间存在m条路径,每条路径有相应的距离,每个城市有一定数量的救援队,请你找出给出的某两个城市之间的最短路径的数量,并找到这些最短路径中救援队数量的最大值。

思路分析:

        很明显这是一个典型的单源汇没有负权求最短路的问题,可以使用dijkstra算法,但是要注意比一般的dijkstra算法多了求最短路径的条数和考虑点权的问题,只需要在更新最短路的过程中增加相应的操作即可,当d[j]>distance+w[i]时需要更新最短距离,最短路数量不变,点权和需要更新;当d[j]==distance+w[i]时最短路数量更新为num[j]=num[x]+num[j],同时点权和更新为最短路中的最大值。

#include<iostream>
using namespace std;
#include<algorithm>
#include<queue>
#include<cstring>
typedef pair<int,int>pii;

const int N=510,M=2*N;
int h[N],e[M],ne[M],w[M],v[N],idx=0,d[N],num[N],amount[N];
//h存储邻接表每个节点的头结点,e存储结点的值,ne存储下一个节点的标号
//idx为边的标号,w存储边的权值,v存储每个点的点权,d存储每个节点到起点的最短距离
//num存储每个点到起点最短路的条数,amount存储这些最短路中点权和的最大值
int n,m,c1,c2;
bool st[N];//表示该点是否确定最短路
priority_queue<pii,vector<pii>,greater<pii>>heap;

void add(int x,int y,int z){//建边
    e[idx]=y;
    w[idx]=z;
    ne[idx]=h[x];
    h[x]=idx++;
}

void dijkstra(){
    d[c1]=0;
    num[c1]=1;
    amount[c1]=v[c1];//初始化
    heap.push({0,c1});
    while(heap.size()){//堆优化的dijkstra算法
        pii t=heap.top();
        heap.pop();
        int distance=t.first,x=t.second;
        if(st[x]) continue;
        st[x]=true;
        for(int i=h[x];i!=-1;i=ne[i]){
            int j=e[i];
            if(!st[j]){
                if(d[j]>distance+w[i]){
                    d[j]=distance+w[i];//更新最短距离
                    num[j]=num[x];//最短路的数量不变
                    amount[j]=amount[x]+v[j];//路径上点变化,点权也跟着更新
                    heap.push({d[j],j});
                }else if(d[j]==distance+w[i]){
                    num[j]=num[x]+num[j];//最短路数量更新
                    amount[j]=max(amount[j],amount[x]+v[j]);//点权和更新为所有最短路中点权和的最大值
                }
            }
        }
    }
}

int main(){
    scanf("%d%d%d%d",&n,&m,&c1,&c2);
    memset(h,-1,sizeof h);
    memset(d,0x3f,sizeof d);
    for(int i=0;i<n;i++) scanf("%d",&v[i]);
    for(int i=0;i<m;i++){
        int x,y,z;
        scanf("%d%d%d",&x,&y,&z);
        add(x,y,z);
        add(y,x,z);//无向图
    }
    dijkstra();
    printf("%d %d\n",num[c2],amount[c2]);
    return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值