机器学习知识(简略)

机器学习(machine learning,ML)是实现人工智能(artificial intelligence,AI)目标的一种方法,深度学习(Deep learning,DL)是机器学习的一个技术

  1. 人工智能 (AI)

    • 人工智能是一个广泛的领域,它涉及到创建能够执行人类智能活动的智能机器或软件系统,如学习、推理、解决问题、感知、理解语言等。

    • AI可以包括各种技术,如规则引擎、专家系统、自然语言处理、计算机视觉等。

    • AI的目标是使计算机能够模拟人类智能,处理复杂的问题,并在没有明确编程的情况下做出决策。

  2. 机器学习 (ML)

    • 机器学习是AI的一个子集,它侧重于开发算法和技术,使计算机系统能够从数据中学习,识别模式,并做出决策,而无需进行明确的编程。

    • ML算法通过分析数据、提取特征和建立模型来实现这一点。

    • ML的应用包括分类、回归、聚类、推荐系统、异常检测等。

  3. 深度学习 (DL)

    • 深度学习是机器学习的一个子集,它使用多层神经网络来模拟人类大脑的信息处理方式。

    • DL特别适合处理大量数据,并且已经在图像识别、语音识别、自然语言处理等领域取得了显著的成果。

    • DL模型,如卷积神经网络(CNNs)、循环神经网络(RNNs)、生成对抗网络(GANs)等,可以通过学习数据的多层次表示来识别复杂的模式

机器学习的主要类型包括:

  1. 监督学习:使用标记的训练数据来学习一个模型,该模型可以预测未见过的数据的输出。例如,监督学习可以用于根据过去的房价数据来预测新房屋的价格。包含:线性回归算法、逻辑回归算法、分类回归(决策树)、朴素贝叶斯、KNN(K-近邻算法)。常见的监督学习任务包括:分类(Classification):预测离散标签,如垃圾邮件检测(是垃圾邮件或不是垃圾邮件)或者识别图片中的对象是猫还是狗。 回归:预测连续值,如预测房价、未来销售、股票价格或者明天的天气。

  2. 无监督学习:在没有标签的数据上工作,试图找到数据中的隐藏结构或模式。聚类和关联规则学习是无监督学习的两个例子。包含:关联规则算法、K-means算法、PCA主成分分析。常见的监督学习任务包括:聚类:将数据点分成多个簇,使得同一簇内的数据点相似度高,不同簇的数据点相似度低,例如,市场细分、社交网络分析或者图像分割(给定一个关于用户信息的数据库,自动将用户分组到不同的市场细分中)。关联规则学习:发现大型数据集中变量之间的有趣关系。 降维:减少数据的维度,同时尽可能保留原始数据的信息,如主成分分析(PCA)。

  3. 半监督学习:结合了少量标记数据和大量未标记数据来提高学习效率,半监督学习介于监督学习和无监督学习之间。

  4. 强化学习:通过与环境的交互来学习,算法通过奖励和惩罚来学习如何做出决策。这在游戏、机器人控制等领域中非常有用。

  5. 深度学习(Deep Learning)

    • 深度学习是机器学习的一个子领域,使用多层神经网络来模拟人类学习过程。
    • 它在图像识别、语音识别、自然语言处理等方面取得了显著成果。

机器学习处理流程通常包括以下步骤:

  1. 问题定义

    • 确定项目目标和机器学习任务类型(分类、回归、聚类、降维等)。
  2. 数据收集

    • 收集用于训练和测试模型的数据。
  3. 数据预处理

    • 数据清洗:处理缺失值、异常值、重复值等。
    • 特征选择:选择对模型有用的特征。
    • 特征工程:创建新特征或转换现有特征以提高模型性能。
    • 数据转换:标准化或归一化数据,使特征具有相同的尺度。
  4. 划分数据集

    • 将数据集分为训练集、验证集和测试集。
  5. 选择模型

    • 根据问题类型选择合适的机器学习算法。
  6. 训练模型

    • 使用训练集数据来训练模型。
  7. 模型评估

    • 使用验证集评估模型性能,调整模型参数(超参数调优)。
  8. 模型优化

    • 根据评估结果优化模型,可能包括调整算法参数、特征工程、模型选择等。
  9. 模型验证

    • 使用独立的测试集来验证模型的泛化能力。
  10. 模型部署

    • 将训练好的模型部署到生产环境中。
  11. 监控和维护

    • 监控模型在实际应用中的表现,并根据需要进行维护和更新。
  12. 反馈循环

    • 收集模型预测结果的反馈,用于未来的模型迭代和改进。

以下是一个总结:

分类(Classification):

算法

  1. 逻辑回归(Logistic Regression):用于二分类问题,也可以扩展到多分类。
  2. 决策树(Decision Trees):适用于处理有明确规则的问题。
  3. 随机森林(Random Forests):用于处理大型数据集,抗过拟合能力强。
  4. 支持向量机(Support Vector Machines, SVM):在高维空间中表现良好,适用于复杂的分类问题。
  5. K最近邻(K-Nearest Neighbors, KNN):简单有效,适用于小数据集。
  6. 朴素贝叶斯(Naive Bayes):基于概率理论,适用于文本分类等。
  7. 神经网络(Neural Networks):强大的模型,适用于复杂的模式识别任务。

应用场景

  • 垃圾邮件检测
  • 疾病诊断
  • 图像识别
  • 文本情感分析

回归(Regression):

算法

  1. 线性回归(Linear Regression):用于预测连续值,基于最佳拟合直线。
  2. 岭回归(Ridge Regression):线性回归的变体,引入L2正则化项。
  3. LASSO回归(Least Absolute Shrinkage and Selection Operator):线性回归的变体,引入L1正则化项。
  4. 决策树回归(Decision Tree Regression):用于处理非线性关系。
  5. 随机森林回归(Random Forest Regression):集成多个决策树进行回归。
  6. 支持向量回归(Support Vector Regression, SVR):基于SVM的回归方法。
  7. 神经网络(Neural Networks):适用于复杂非线性关系的预测。

应用场景

  • 房价预测
  • 股票价格预测
  • 销量预测
  • 医疗诊断中的生存时间预测

聚类(Clustering):

算法

  1. K-Means:将数据点分成K个簇,使得簇内的方差尽可能小。
  2. 层次聚类(Hierarchical Clustering):通过创建一个聚类树来逐步合并或分割簇。
  3. DBSCAN(Density-Based Spatial Clustering of Applications with Noise):基于密度的聚类方法,可以识别任意形状的簇。
  4. 谱聚类(Spectral Clustering):基于图论中的谱理论,适用于复杂的聚类结构。

应用场景

  • 市场细分
  • 社交网络分析
  • 图像分割
  • 基因表达数据分析

降维(Dimensionality Reduction):

算法

  1. 主成分分析(Principal Component Analysis, PCA):通过线性变换将数据投影到新的坐标系,保留最大的方差。
  2. 线性判别分析(Linear Discriminant Analysis, LDA):不仅降维,还考虑了分类标签的信息。
  3. t-分布随机邻域嵌入(t-Distributed Stochastic Neighbor Embedding, t-SNE):用于可视化高维数据。
  4. 自编码器(Autoencoders):使用神经网络来学习数据的有效编码。

应用场景

  • 数据可视化
  • 预处理步骤,提高算法效率
  • 特征提取
  • 降噪
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值