'''join和merge进行数据合并'''
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
#join:数据合并
'''使用方法:t1.join(t2),保持t1形状的基础上,将t2的所有列加到t1的后面
行数以t1为准,t1和t2行索引相同的部分进行数据合并'''
t1=pd.DataFrame(np.ones((2,5)),index=['A','B'],columns=list('VWXYZ'))
t2=pd.DataFrame(np.zeros((3,4)),index=['D','B','C'])
print(t1,'\n',t2)
t3=t1.join(t2)
print('*'*100)
print(t3)
print('*'*100)
#数据合并merge
t1.loc['A','Y']=0.0
print(t1)
t2=pd.DataFrame(np.zeros((3,4)),index=['A','B','C'],columns=['A','M','Y','Z'])
print(t2)
'''取并集:outer,对Y相同的部分进行a*b成序列,缺失的部分用nan补齐
取交集:inner,只显示Y部分相同的行进行a*b序列,不输入参数,默认取交集
保留左边t1:left,相同的部分a*b序列,不同的部分保留t1
pandas数据合并拆分及聚合
最新推荐文章于 2024-09-22 18:32:26 发布
本文探讨了如何利用Python的pandas库进行数据的合并、拆分以及聚合操作,特别是详细讲解了在数据分组后如何运用groupby().count()方法进行计数统计。
摘要由CSDN通过智能技术生成