信息熵
n种可能性,在不知道任何信息时,将信息砍半后进行选择,如有32支球队,判断拿纸球队会获胜时,首先选择16支获胜概率较大的球队,→8→4→2→1,共选择5次,因此信息熵为log32=5(默认以2为底)因为每次选择进行二选一。当这32支球队夺冠的几率相同时,对应的信息熵等于5比特
信息和消除不确定性是相联系的
决策树的划分依据之一-信息增益:特征A对训练数据集D的信息增益g(D,A),定义为集合D的信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为
注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度
常见决策树使用的算法:
ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则
sklearn决策树API
•
class
sklearn.tree.DecisionTreeClassifier
(
criterion=’
gini
’
,
max_depth
=
None
,
random_state
=None