决策树+随机森林算法

本文介绍了决策树的基础知识,包括信息熵和信息增益的概念,并探讨了ID3、C4.5和CART等算法的选择原则。此外,详细阐述了如何使用sklearn库构建和可视化决策树。随后,文章转向随机森林这一集成学习方法,解释了随机森林的工作原理,强调了有放回抽样的重要性,并简要提到了随机森林的API参数。最后,指出随机森林在降低过拟合风险和提高预测准确性方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

信息熵

n种可能性,在不知道任何信息时,将信息砍半后进行选择,如有32支球队,判断拿纸球队会获胜时,首先选择16支获胜概率较大的球队,→8→4→2→1,共选择5次,因此信息熵为log32=5(默认以2为底)因为每次选择进行二选一。当这32支球队夺冠的几率相同时,对应的信息熵等于5比特 

信息和消除不确定性是相联系的

决策树的划分依据之一-信息增益:特征A对训练数据集D的信息增益g(D,A),定义为集合D信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)之差,即公式为

注:信息增益表示得知特征X的信息而使得类Y的信息的不确定性减少的程度 

常见决策树使用的算法:
ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小

分类树: 基尼系数   最小的准则 在sklearn中可以选择划分的原则

sklearn决策树API

class  sklearn.tree.DecisionTreeClassifier ( criterion=’ gini max_depth = None , random_state =None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值