1.简述
核心问题:
BP网络是前向网络的核心部分,是神经网络中的最精华、最完美的部分,由于其简单的结构,可调整的参数多,训练算法也多,而且可操作性好,BP神经网络获得了非常广泛的应用,但是也存在着一些缺陷,例如学习收敛速度太慢、不能保证收敛到全局最小点、网络结构不易确定。另外,网络结构、初始连接权值和阈值的选择对网络训练的影响很大,但是又无法准确获得,针对这些特点可以采用遗传算法对神经网络进行优化。
遗传算法优化BP神经网络主要分为:BP神经网络结构确定、遗传算法优化权值和阈值、BP神经网络训练及预测。其中,BP神经网络的拓扑结构是根据样本的输入/输出参数个数确定的,这样就可以确定遗传算法优化参数的个数,从而确定种群个体的编码长度。因为遗传算法优化参数是BP神经网络的初始权值和阈值,只要网络结构已知,权值和阈值的个数就已知了。神经网络的权值和阈值一般是通过随机初始化为[-0.5,0.5]区间的随机数,网络的训练结果是一样的,引入遗传算法就是为了优化出最佳的初始权值和阈值。
神经网络算法实现:
网络创建:BP神经网络的确定有以下两条重要的指导原则。
1.对于一般的模式识别问题,三层网络可以很好地解决问题。
2.在三层网络中,隐含层神经网络个数n2和输入层神经元个数n1之间有近似关系:
遗传算法实现:
遗传算法优化BP神经网络是用遗传算法来优化BP神经网络的初始权重值和阈值,使优化后的BP神经网络能够更好地进行样本预测。遗传算法优化BP神经网络的要素包括种群初始化、适应度函数,选择算子、交叉算子和变异算子。
(1)种群初始化
个体编码使用二进制编码,每个个体均为一个二进制串,由输人层与隐含层连接权值、隐含层阈值、隐含层与输出层连接权值、输出层阈值四部分组成,每个权值和