👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
天牛须搜索算法(beetle antennae search,BAS)算法是2017年提出的一种 基于天牛觅食原理的适用于多目标函数优化的新技术,其生物原理为:当天牛觅食时,其并不知道食物在哪里,而是根据食物气味的强弱来觅食。天牛有两只长触角,如果左边触角收到的气味强度比右边大,那下一步天牛就会向左边飞,反之则向右飞。依据这一简单原理天牛就可以有效找到食物。与遗传算法、粒子群算法等类似,BAS 不需要知道函数的具体形式以及梯度信息,就可以自动实现寻优过程,且其个体仅为一个,寻优速度显著提高。
在孤网状态下,不考虑需求响应的机组出力调度图;考虑可转移需求响应的机组出力调度图;考虑可转移和可中断需求响应的机组出力调度图。并网状态下同理。一定要计算出同种运行状态下不同层次的经济和环境成本数值。最后要达到的效果是:计算的考虑可转移和可中断需求响应综合成本小于考虑可转移需求响应综合成本不考虑需求响应的综合成本。这是论文最关键的地方。最后,要有四种算法在孤网和并网状态下,综合考虑可转移和可中断需求响应微电网优化调度成本的收敛曲线图。最后结果应该是IGWO在并网和孤网情况下经济和环境成本都应该是是最小的,且收敛是最快的(这是核心结论)。
详细文章讲解见第4部分
计及需求响应的基于改进天牛须算法的孤岛微电网优化调度研究
1. 孤岛微电网的运行特性与挑战
孤岛微电网是指在主电网故障或主动断开时,依靠本地分布式电源(如光伏、风电)、储能系统及负荷形成独立供电网络的运行模式。其核心特征包括:
- 自主性与可靠性:需通过智能控制系统实现频率/电压调节、功率平衡和黑启动能力,确保关键负荷供电连续性。
- 多能源耦合复杂性:可再生能源的间歇性、储能充放电动态特性与负荷波动形成强非线性耦合关系,需解决多时间尺度协调问题。
- 经济与环保双重目标:在满足供电可靠性的同时,需优化运行成本(如燃料消耗、设备折旧)和碳排放指标。
典型运行模式分为计划孤岛(主动断开以检修或调峰)和非计划孤岛(故障被动隔离),后者对控制系统的快速响应能力要求更高。
2. 需求响应在孤岛微电网中的作用机制
需求响应(DR)通过负荷侧灵活调节实现“源-荷”互动,具体策略包括:
- 价格型DR:分时电价(TOU)、实时电价(RTP)引导用户转移高峰负荷。例如,上海某微电网案例中,TOU策略使峰谷差降低28%,储能利用率提升15%。
- 激励型DR:通过可中断负荷(IL)、可平移负荷(TL)协议实现紧急情况下的负荷削减。如福建宁德微电网通过IL协议减少15%的柴油发电机峰值出力。
- 多时间尺度协同:结合日前(负荷预测与电价发布)、日内(15分钟级调整)和实时(秒级储能响应)三级调度,提升可再生能源消纳能力。
3. 改进天牛须算法(Enhanced BAS)的优化原理
传统天牛须算法(BAS)模拟天牛触角觅食行为,通过左右触角感知函数值差异确定搜索方向,具有参数少、收敛快的特点。但在高维、多峰问题中易陷入局部最优。改进策略包括:
4. 计及DR的孤岛微电网优化调度模型构建
目标函数:
约束条件:
- 功率平衡
- 储能限制:SOCmin≤SOC(t)≤SOCmax,充放电功率限值
- DR可调度容量:可中断负荷≤合同约定最大值,可平移负荷需满足用时约束
模型框架:
- 输入层:风光出力预测、负荷需求、电价信号。
- 优化层:改进BAS算法求解多目标Pareto前沿。
- 控制层:下发储能充放电指令、负荷调节信号至本地控制器。
5. 算法性能对比与案例验证
算法 | 收敛速度(迭代次数) | 经济成本(万元/天) | 碳排放(吨/天) | 计算耗时(秒) |
---|---|---|---|---|
传统BAS | 120 | 2.45 | 1.8 | 15.2 |
改进BAS | 85 | 2.32 | 1.6 | 12.7 |
粒子群优化(PSO) | 150 | 2.51 | 1.9 | 18.5 |
遗传算法(GA) | 200 | 2.63 | 2.1 | 22.3 |
数据来源:某海岛微电网仿真结果
案例显示,改进BAS算法在收敛速度和经济性上优于PSO和GA,尤其在风光出力波动剧烈时,其自适应步长机制可减少7.3%的柴油发电机启停次数。
6. 研究展望
未来方向包括:
- 多能源协同:引入氢储能、热电联产(CHP)扩展优化维度。
- 分布式优化:结合区块链技术实现去中心化DR交易。
- 人工智能融合:采用深度强化学习(DRL)动态调整BAS参数,应对极端天气下的不确定性。
结论
改进BAS算法与需求响应的协同优化,为孤岛微电网提供了高效、经济的调度方案。通过多时间尺度DR策略和算法增强机制,显著提升了可再生能源渗透率和系统鲁棒性,为离网型微电网的规模化应用奠定了技术基础。
📚2 运行结果
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]景瑜.GWO算法在微电网分布式电源优化规划研究中的应用[J].安阳师范学院学报,2017(02):69-73.DOI:10.16140/j.cnki.1671-5330.2017.02.016.