机器学习
文章平均质量分 87
Shining0596
星空浩瀚无比,探索永无止境
展开
-
数据挖掘与机器学习:维归约
第一关本关任务:使用 Python 语言实现 PCA 降维算法。为了完成本关任务,你需要掌握:PCA 降维的原理,如何使用 Python 实现 PCA 降维。第二关本关任务:使用python语言实现LDA算法。为了完成本关任务,你需要掌握:LDA算法原理,使用python实现算法。第三关本关任务:生成无标签数据,PCA 投影并可视化 PCA 投影。第四关本关任务:主成分分析和线性判别分析法对其进行投影,给出两种方法的投影方向。第五关本关任务:对乳腺癌数据进行主成分分析和线性分析。原创 2022-11-23 23:22:47 · 901 阅读 · 0 评论 -
数据挖掘与机器学习:数据挖掘算法原理与实践:数据预处理
第一关本关任务:利用sklearn对数据进行标准化。为了完成本关任务,你需要掌握:1.为什么要进行标准化,2.Z-score标准化,3.Min-max标准化,4.MaxAbs标准化。第二关本关任务:利用sklearn对数据进行非线性转换。为了完成本关任务,你需要掌握:1.为什么要非线性转换,2.映射到均匀分布,3.映射到高斯分布。第三关本关任务:利用sklearn对数据进行归一化。第四关、本关任务:利用sklearn对标签进行OneHot编码。第五关、第六关。原创 2022-11-22 23:00:07 · 4587 阅读 · 0 评论 -
数据挖掘算法原理与实践:k-均值
第一关本关任务:使用Pyhton编写一个能计算所有样本质心且将所有样本到质心距离按从小到大排序的方法。为了完成本关任务,你需要掌握:1.什么是质心。第二关本关任务:使用python实现kmeans方法,并对鸢尾花数据进行聚类。为了完成本关任务,你需要掌握:1.k-means算法原理,2.k-means算法流程,3.如何确定k的值。根据提示,在右侧编辑器Begin-End处补充代码,实现kmeans方法,其中距离设为欧氏距离。原创 2022-11-22 22:29:48 · 4383 阅读 · 0 评论 -
数据挖掘与机器学习:组合相似分类器提高分类性能
本关任务:编写一个组合分类器。为了完成本关任务,你需要掌握:1.了解几种不同分类器 2.如何遍历数组。基于数据集多重抽样的分类器。我们可以将不同的分类器组合起来,而这种组合结果则被称为集成方法(ensemblemethod)或者元算法(meta-algorithm)。使用集成方法时会有多种形式:可以是不同算法的集成,也可以是同一算法在不同设置下的集成,还可以是数据集不同部分分配给不同分类器之后的集成。我们将介绍基于同一种分类器多个不同实例的两种计算方法。原创 2022-11-21 21:20:41 · 599 阅读 · 0 评论 -
基于SVM的航空发动机故障诊断系统设计
第一关本关任务:补充数据准备模块代码,应用Panads模块,生成训练数据集。第二关本关任务:要求对第一关获取的数据进行数据预处理,包括数据标准化与主成分分析降维。第三关本关任务:训练SVM并进行测试。第四关本关任务:绘制ROC曲线。原创 2022-11-21 21:04:06 · 2681 阅读 · 6 评论 -
数据挖掘与机器学习:使用朴素贝叶斯进行文档分类
本关任务:编写程序,完成朴素贝叶斯分类文档。为了完成本关任务,你需要掌握:1.朴素贝叶斯分类文档的过程,2.朴素贝叶斯分类文档的核心算法。机器学习的一个重要应用就是文档的自动分类。在文档分类中,整个文档(如一封电子邮件)是实例,而电子邮件中的某些元素则构成特征。虽然电子邮件是一种会不断增加的文本,但我们同样也可以对新闻报道、用户留言、政府公文等其他任意类型的文本进行分类。我们可以观察文档中出现的词,并把每个词的出现或者不出现作为一个特征,这样得到的特征数目就会跟词汇表中的词目一样多。原创 2022-11-10 17:10:25 · 1878 阅读 · 0 评论 -
机器学习 --- kNN算法
第一关本关任务:补充 python 代码,完成 kNNClassifier 类中的 fit 函数与 predict 函数。实现 kNN 算法的训练与预测功能。为了完成本关任务,你需要掌握 kNN 算法的算法流程。第二关本关任务: sklearn 中的 KNeighborsClassifier 类实现了 kNN 算法的分类功能,本关你需要使用 sklearn 中 KNeighborsClassifier 来对红酒数据进行分类。原创 2022-11-09 22:54:00 · 4431 阅读 · 2 评论 -
数据挖掘与机器学习:Apripori算法
第一关本关任务:编写一个能实现Apripori算法候选生成的小程序。第二关本关任务:编写一个能实现候选剪枝的小程序。第三关本关任务:编写一个能实现基于遍历的支持度计算的小程序。原创 2022-11-09 19:25:36 · 5496 阅读 · 3 评论 -
数据挖掘与机器学习:运算符的使用
第一关本关介绍 Python 中的一些基本运算符,并要求对给定的苹果和梨的数量进行算术运算、比较、赋值运算,然后输出相应的结果。第二关本关介绍运算符中的逻辑运算符,逻辑运算符能够将语句连接成更加复杂的复杂语句。第三关位运算就是对二进制按位进行运算。本关的任务就是让学习者了解并能运用 Python 中的位运算符来进行运算。第四关本关的任务就是学习并运用成员运算符。第五关本关的任务是学习并掌握身份运算符,这个运算符可以判断两个变量的存储单元是否相同。第六关是让学习者掌握运算符的优先级,并能根据要求写出运算语句。原创 2022-11-08 22:42:32 · 772 阅读 · 0 评论 -
数据挖掘与机器学习:循环结构
第一关本关的任务是让学习者学会使用while循环与break语句。程序的第三大结构是循环结构。第二关本关的任务是让学习者学会使用for循环与continue语句。Python 中还为我们提供了一种循环结构:for循环。第三关本关的任务是让学习者学会使用循环嵌套。在Python 中,除了while循环与for循环,还有循环嵌套。循环嵌套就是在一个循环体里嵌入另一个循环。第四关迭代器用来循环访问一系列元素,它不仅可以迭代序列,也可以迭代不是序列但是表现出序列行为的对象。本关的任务是让学习者理解与学会使用迭代器原创 2022-11-08 21:35:32 · 410 阅读 · 0 评论 -
数据挖掘与机器学习:数据变换
第一关本关任务:进行数据的极大极小归一化处理。根据提示,在右侧编译器中的 begin-end 代码块内完成极小极大归一化函数代码。第二关根据提示,在右侧编译器的 begin-end 代码块内完成 0 均值标准化函数代码。本关任务:进行数据的0均值标准化处理。原创 2022-11-08 20:39:08 · 1276 阅读 · 0 评论 -
数据挖掘与机器学习:顺序与选择结构
第一关程序最基本的结构就是顺序结构,顺序结构就是程序按照语句顺序,从上到下依次执行各条语句。本关要求学习者理解顺序结构,并对输入的三个数changeone、changetwo、plus先交换changeone、changetwo值,然后再计算changeone + plus的值。第二关程序的第二大结构就是选择结构。在此结构中,程序通过对一个代码块或者几个代码块的判断来决定接下来运行哪一个代码块。第三关程序中的选择结构中除了if-else、elif之外,还有一个三元操作符。原创 2022-11-06 23:04:26 · 212 阅读 · 0 评论 -
数据挖掘与机器学习:字符串处理
第一关本关任务是将两个不同的字符串,拼接形成一个字符串,并将新字符串输出来。第二关本关任务:对给定的字符串进行处理,包括字符串长度计算、大小写转换以及去除字符串前后空格等。第三关本关的任务是,给定一个字符串,要利用 Python 提供的字符串处理方法,从该字符串中,查找特定的词汇,并将其替换为另外一个更合适的词。原创 2022-11-06 21:12:00 · 586 阅读 · 0 评论 -
数据挖掘与机器学习:函数结构
第一关本实训的目标是让学习者了解并掌握函数结构的相关知识,本关的小目标则是让学习者先了解并掌握函数参数的有关知识。第二关函数在进行运算处理后,返回的值被称为返回值。函数返回的值是通过return语句执行。返回值能够让我们直接得到函数处理的结果,而不必关心函数内部复杂繁重的运算过程,大大提高了编程效率。第三关函数是有使用范围的,在一个模块中,我们可以定义很多函数和变量。本关的目标就是让学习者了解并掌握函数的使用范围,即 Python 作用域的相关知识。原创 2022-11-06 20:37:41 · 630 阅读 · 0 评论 -
数据挖掘与机器学习:函数调用
第一关本关目标是让学习者了解并掌握一些常用的 Python 内置函数的用法。第二关函数被定义后,本身是不会自动执行的,只有在被调用后,函数才会被执行,得到相应的结果。第三种我们一般将字符串、列表等变量作为参数进行函数调用。但函数本身也是一个对象,所以我们也可以将函数作为参数传入另外一个函数中并进行调用。本关的目标是让学习者了解并掌握函数作为参数传入另外一个函数中并进行调用的相关知识。原创 2022-11-03 22:49:11 · 286 阅读 · 0 评论 -
数据挖掘与机器学习:玩转列表
第一关本关任务是对一个给定的列表进行增、删、改等操作,并输出变化后的最终列表。第二关本关的任务是学会列表排序相关操作的使用方法,实现对列表元素的排序。第三关本关任务是利用合适的方法快速创建数字列表,并能够对列表中的元素数值进行简单的统计运算。第四关我们在前三关中学习了如何处理单个列表元素和所有列表元素,在这一关中我们还将学习如何处理部分列表元素(Python 中称为切片)。原创 2022-11-03 21:47:17 · 1363 阅读 · 0 评论 -
数据挖掘与机器学习:NumPy基础及取值操作
第一关本关任务根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成程序的编写并通过所有测试用例。第二关本关任务根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成程序的编写并通过所有测试用例。第三关本关任务:根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成程序的编写并通过所有测试用例。第四关本关任务根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成程序的编写并通过所有测试用例。第五关本关任务:根据本关所学知识,补全右侧代码编辑器中缺失的代码,完成ROI提取的功能。原创 2022-11-03 21:02:39 · 2239 阅读 · 0 评论 -
数据挖掘与机器学习:机器学习 --- 决策树
第一关本关任务:根据本节课所学知识完成本关所设置的选择题。第二关本关任务:掌握什么是信息增益,完成计算信息增益的程序设计。第三关本关任务:根据本关所学知识,完成calcInfoGainRatio函数。第四关本关任务:根据本关所学知识,完成calcInfoGainRatio函数。第五关本关任务:根据本关所学知识,完成calcGini函数。第六关本关任务:补充python代码,完成DecisionTree类中的fit和predict函数。第七关本关任务:使用sklearn完成鸢尾花分类任务。原创 2022-11-02 23:31:45 · 3747 阅读 · 0 评论 -
数据挖掘与机器学习:Matplotlib接口和常用图形
第一关本关任务:掌握matplotlib的基本使用技巧,并能简单使用matplotlib进行可视化。第二关本关任务:学习掌握matplotlib的第一个图形线形图,并能够使用线形常用配置。第三关本关任务:编写一个包含三组不同样式的散点图。第四关本关任务:绘制一个包含直方图与线形图的图形。第五关本关任务:绘制一个饼图。原创 2022-11-02 22:47:39 · 4237 阅读 · 0 评论 -
数据挖掘与机器学习:基于贝叶斯决策理论的分类方法
本关任务:理解朴素贝叶斯的分类思想,完成编程习题。为了完成本关任务,你需要掌握:1.贝叶斯,2.朴素贝叶斯。原创 2022-11-02 21:52:14 · 603 阅读 · 0 评论 -
数据挖掘与机器学习:Numpy初体验
第一关本关的小目标是,使用 Numpy 创建一个多维数组。第二关本关的小目标是,学会Numpy二维数组的一些基本操作。第三关本关的小目标是,从数组中选择指定的元素。第四关本关的目标是,改变Numpy数组的形状。第五关本关的目标是,对Numpy数组进行拆分。原创 2022-11-02 21:37:36 · 780 阅读 · 0 评论 -
数据挖掘与机器学习:Python机器学习软件包Scikit-Learn的学习与运用
第一关任务描述使用 scikit-learn 的datasets模块导入 iris 数据集,并打印数据。第二关任务描述在前一关卡,我们已经学会了使用 sklearn 导入数据,然而原始数据总是比较杂乱、不规整的,直接加载至模型中训练,会影响预测效果。第一关至第六关原创 2022-11-02 21:30:05 · 3733 阅读 · 0 评论 -
数据挖掘与机器学习:元组与字典
第一关任务描述元组看起来犹如列表,但元组使用圆括号()而不是[]来标识,而且列表的元素可以修改,但元组的元素不能修改。本关介绍元组的常见使用方法以及元组和列表的使用区别。第二关任务描述字典和列表一样,都是 Python 中十分重要的可变容器模型,都可以存储任意类型元素。第三关任务描述Python 字典中包含大量数据,它和列表一样,支持遍历操作。第四关任务描述Python 的列表和字典可以存储任意类型的元素,所以我们可以将字典存储在列表中,也可以将列表存储在字典中,这种操作称为嵌套。原创 2022-11-02 20:45:44 · 2516 阅读 · 0 评论 -
数据挖掘与机器学习:Python入门之基础语法
第一关本关任务:改正代码中不正确的缩进,使其能够正常编译,并输出正确的结果。第二关本关任务:改正程序中的错误,并输出 Python3 的所有保留字。第三关本关任务:修改程序,得到正确的结果。第四关本关任务:编写一个对用户输入,进行加减乘除四则运算的程序。原创 2022-11-01 22:25:44 · 710 阅读 · 0 评论 -
Machine Learning学习(一)Overview of machine learning机器学习概述
欢迎来到机器学习专业!您将加入数百万其他人的行列,他们参加了这门课程或最初的课程,这导致了Coursera的成立,并帮助了数百万其他学习者,像您一样,看看令人兴奋的机器学习世界!原创 2022-10-27 23:08:14 · 582 阅读 · 0 评论