- 博客(54)
- 收藏
- 关注
原创 Transformer
摘要:Transformer是由Google在2017年提出的革命性深度学习模型,其核心是自注意力机制,替代了传统RNN和CNN。该模型由编码器和解码器组成,具有并行计算能力强、长距离依赖建模等优势。在NLP领域广泛应用,催生了BERT、GPT等经典模型,推动机器翻译、文本生成等任务取得突破性进展。Transformer的高效性和灵活性使其成为人工智能领域的重要技术基础。
2025-06-28 00:15:00
1753
原创 高斯混合模型(Gaussian Mixture Model, GMM)
高斯混合模型(GMM)是一种概率模型,通过多个高斯分布混合生成数据,适用于聚类、密度估计等任务。其核心是使用EM算法估计参数,支持软聚类和非球形数据建模。GMM广泛应用于图像分割、语音识别等领域,具有建模灵活的优势,但存在计算复杂度高、对初始值敏感等局限。可结合变分推断、深度学习等方法进行优化扩展,提升模型性能。
2025-06-27 00:00:00
710
原创 卷积神经网络(Convolutional Neural Network, CNN)
卷积神经网络(CNN)是一种专门处理网格数据的深度学习模型,广泛应用于计算机视觉领域。其核心是通过卷积层自动提取特征,利用空间共享权重和池化层降低计算复杂度。典型结构包括输入层、卷积层、池化层和全连接层。CNN具有参数共享、平移不变性和自动特征提取等优势,经典模型包括LeNet、AlexNet和ResNet等。尽管面临计算资源需求高、过拟合等挑战,但通过注意力机制、轻量化网络等改进,CNN在图像分类、目标检测等任务中表现卓越。PyTorch等框架为CNN实现提供了便利。
2025-06-26 00:15:00
1403
1
原创 ResNet(Residual Network)
ResNet(残差网络)是2015年提出的突破性CNN架构,通过引入残差连接(Skip Connection)解决了深度网络的梯度消失问题。其核心残差模块采用"输入+残差映射"的设计,使得网络能够训练上百层(如ResNet-152),在图像分类、目标检测等任务中表现优异。典型结构包含多个残差块阶段,通过BasicBlock(浅层)或BottleneckBlock(深层)灵活堆叠。该架构模块化强、计算高效,催生了ResNeXt、DenseNet等改进模型,成为计算机视觉领域的基石技术。
2025-06-25 06:45:00
870
原创 循环神经网络(Recurrent Neural Network, RNN)
循环神经网络(RNN)是处理序列数据的经典模型,通过循环连接和参数共享实现时序依赖性建模。其核心是通过隐藏状态传递信息,但面临梯度消失/爆炸等问题。改进模型如LSTM、GRU引入门控机制解决长期依赖问题,BiRNN则捕获双向上下文。RNN广泛应用于NLP、语音处理和时间序列预测等领域,具有时序建模能力强和参数共享的优点,但也存在训练效率低等问题。尽管Transformer等新模型崛起,RNN仍为时序建模的重要基础。
2025-06-24 05:30:00
768
原创 长短期记忆网络(LSTM,Long Short-Term Memory)
LSTM网络通过细胞状态和门控机制解决了传统RNN的长期依赖问题。其核心结构包括遗忘门、输入门和输出门,分别控制信息遗忘、更新和输出。工作原理为选择性记忆和更新细胞状态,适用于NLP、语音识别和时间序列预测等场景。虽然LSTM具有捕获长序列依赖的优势,但存在计算复杂度高、训练效率低等缺点。改进方法包括双向LSTM、GRU和注意力机制,这些技术推动了时序数据处理的发展,使LSTM成为序列建模的重要工具。
2025-06-23 07:00:00
584
原创 双向长短期记忆网络(BiLSTM)
BiLSTM是一种改进的循环神经网络,通过同时处理序列的正反向信息来增强上下文建模能力。其结构包含两个LSTM层,分别从不同方向处理输入数据,并将隐状态拼接作为最终输出。BiLSTM广泛应用于NLP任务(如情感分析、命名实体识别)和时间序列预测,优势在于强大的上下文感知能力,但计算复杂度较高。尽管存在长序列训练困难等问题,结合现代硬件和优化技术,BiLSTM仍是序列建模的重要方法。
2025-06-22 22:43:08
503
原创 for循环实现1-100的和
total_sum += number # 将当前数字加到总和上。print("1加到100的和是:", total_sum)# 使用for循环遍历1到100。
2025-06-10 12:27:25
315
原创 Res2Net: 超越ResNet的深层网络架构
在深度学习的浪潮中,卷积神经网络(CNN)已成为图像识别、物体检测等计算机视觉任务的核心工具。ResNet(残差网络)的出现,通过引入残差连接解决了深层网络训练中的梯度消失问题,极大地推动了这一领域的发展。然而,技术的迭代从未停止,Res2Net作为ResNet的进化版,以其独特的“多柱结构”进一步提升了模型的性能和效率。本文将深入探讨Res2Net的设计理念、结构特点及其应用前景。
2024-09-14 21:14:00
986
原创 ResNet(Residual Network)网络介绍
这一网络结构的提出,标志着深度学习领域的一个重要突破,因为它解决了随着网络深度增加而出现的梯度消失或爆炸问题。在传统的卷积神经网络中,当网络层数增多时,会出现梯度消失或爆炸的现象,这严重阻碍了深层网络的训练效率。ResNet的出现不仅推动了深度学习技术的进一步发展,还促进了相关领域的研究,例如对残差学习的进一步探索和优化。总的来说,ResNet通过其创新的残差结构和高效的训练能力,在深度学习领域内占据了极其重要的地位。它不仅解决了深层网络训练中的梯度问题,还为未来的神经网络设计提供了新的思路和方法。
2024-09-14 21:09:45
532
原创 语音识别(读取。预加重。分帧。加窗)
虽然语音信号具有时变特性,但是在一个短时间范围内(一般认为在10~30ms),其特性基本保持不变即相对稳定,因而可以将其看作是一个准稳态过程,即语音信号具有短时平稳性,因此我们需要将语音信号进行分帧处理。预加重以后的图像与原图像相比较,原图像的幅值很大,在预加重以后的频谱中,对基频谱线幅值有一定的抑制,高频端的幅值有所提升。傅里叶变换要求输入信号是平稳的,但是语音信号从整体上来讲是不平稳的,如果把不平稳的信号作为输入,傅里叶变换将无意义。x1 中的每个元素表示了第一帧中对应位置的采样点序号。
2024-08-11 07:15:00
644
原创 语音识别是什么
总之,语音识别技术通过几十年的发展,已经取得了显著进步,并在多个领域实现了广泛应用。未来,随着技术的不断革新和应用需求的扩展,语音识别将继续推动智能化人机交互的发展。语音识别技术通过处理和分析语音信号,使得计算机能够自动识别并理解人类的语言,从而实现智能化的人机交互。
2024-08-10 07:00:00
401
原创 语音识别技术有哪些应用场景?
总的来说,语音识别技术通过将语音转换为可处理的文本信息,极大地便利了人们的生活和工作。随着技术的不断进步,未来语音识别将更加精准和高效,其应用场景也将更加广泛。语音识别技术,作为人工智能领域的重要分支,已经深入到我们日常生活的方方面面。
2024-08-10 07:00:00
1855
原创 深度学习是什么
深度学习致力于让机器能够像人一样具有分析学习能力,识别文字、图像和声音等数据。其核心是深层次的人工神经网络,包括卷积神经网络(CNN)、深度置信网络(DBN)和自编码器等。总之,深度学习通过构建多层次的神经网络来实现任务。从基本原理到实际应用,深度学习已经在众多领域展示了其强大能力,未来也将继续推动人工智能的发展。理解其基本概念和技术细节,有助于更好地掌握这一前沿技术。
2024-08-09 07:00:00
451
原创 深度学习网络是什么
总之,深度学习网络通过构建多层次的神经元结构来实现任务。从基本原理到实际应用,深度学习网络已经在众多领域展示了其强大能力,未来也将继续推动人工智能的发展。理解其基本概念和技术细节,有助于更好地掌握这一前沿技术。它由多层神经元组成,每层神经元通过权重和激活函数处理输入数据,并将结果传递给下一层,最终实现复杂的模式识别和决策任务。
2024-08-09 07:00:00
842
原创 深度学习在图像识别中的应用有哪些?
总的来说,深度学习在图像识别领域的应用不仅广泛而且深入影响了各行各业,从基础的图像分类到复杂的视频分析和工业检测,深度学习都展现了其强大的能力和潜力。随着技术的进一步发展,未来可以期待更多创新的应用和突破。深度学习在图像识别中的应用广泛且具有深远的影响力。
2024-08-08 07:00:00
1085
原创 深度学习的图像识别
总的来说,深度学习在图像识别领域的应用不仅广泛而且深入影响了各行各业,从基础的图像分类到复杂的视频分析和工业检测,深度学习都展现了其强大的能力和潜力。随着技术的进一步发展,未来可以期待更多创新的应用和突破。深度学习在图像识别中的应用广泛且具有深远的影响力。
2024-08-08 07:00:00
497
原创 机器学习的主要语言
此外,Python的简洁语法和强大的社区支持也是其受欢迎的重要原因。虽然Java在机器学习领域的使用率并不高,但其强大的性能和跨平台的特性使其在某些场景下仍然是一个好的选择。TensorFlow.js,一个基于JavaScript的机器学习库,使得开发者可以在浏览器中直接进行机器学习任务,这大大扩展了机器学习的应用范围。机器学习,作为人工智能的一个核心领域,它的发展离不开编程语言的支撑。以上就是机器学习的主要语言,每种语言都有其独特的优势和适用场景,开发者可以根据自己的需求和背景选择合适的语言。
2024-08-07 07:15:00
496
原创 机器学习有哪些主要技术?
总的来说,机器学习技术涵盖广泛且应用多样,从基础的监督学习到复杂的强化学习,每种技术都有其独特的优势和应用场景。理解并灵活运用这些技术,可以显著提升数据分析和自动化决策的效果。机器学习的主要技术包括。
2024-08-07 07:00:00
772
原创 2、如何对并行算法的设计过程分步?每一步的主要内容是什么?
功能分解(functional decomposition)域分解(domain decomposition)通讯:确定诸任务间的数据交换,监测划分的合理性;映射:将每个任务分配到处理器上,提高算法的性能。组合:依据任务的局部性,组合成更大的任务;划分:分解成小的任务,开拓并发性。
2024-08-06 22:39:58
362
原创 《现代通信原理与技术》模拟调制与解调—FM 调制实验报告
本实验旨在通过 MATLAB 软件进行模拟调制与解调的实践, 加深对频率调制(Frequency Modulation, FM)原理的理解,并掌 握 FM 调制与解调的实现方法。关键词:MATLAB本次实验通过MATLAB模拟了调频(Frequency Modulation, FM)调制与 解调的基本过程,并通过图形展示了各个阶段的信号波形。实验主要分为四 部分:原始信号的生成、载波信号的生成、FM调制以及近似解调。1、实验过程。
2024-06-19 00:00:00
2845
原创 《EDA技术》同步十三进制计数器实验报告
本实验通过Multsim和Quartus软件完成对同步十三进制计数器的仿真,运用Quartus软件编VHDL程序,实现波形图的生成,并且运用Multsim软件进行电路图仿真。同时,加深 对数字电路和VHDL语言的理解,提高实验操作能力。Quartus;Multsim;VHDL一.本次实验通过使用Quartus软件编写了一个JK触发器的VHDL代码,并进行了 波形仿真验证。以下是对代码和实验结果的总结:(1)使用了IEEE标准库,包括std_logic_1164和std_logic_unsigned。
2024-06-19 00:00:00
1709
原创 《现代通信原理与技术》数字调制与解调(MSK调制)实验报告
本实验旨在通过MATLAB编程实现MSK调制和解调过程,并通过波形图对比原始信号、调制信号和解调信号,验证MSK调制和解调的有效性,加深对数字调制技术的理解。最后,通过对比原始信号、调制信号和解调信号的波形图,验证了MSK调制和解调的有效性。本实验旨在通过MATLAB编程实现MSK调制和解调过程,深入了解MSK调制的工作原理和特点,以及验证MSK调制和解调的有效性。通过本实验,可以深入了解MSK调制技术的原理和特点,掌握MSK调制和解调的基本方法,加深对数字调制技术在通信系统中的应用和意义的理解。
2024-06-18 00:00:00
2543
原创 《EDA技术》十六选一数据选择器实验报告
您们的严谨治学态度和无私奉献的精神,是我们学习的楷模,让我们在实验过程中收获满满,受益匪浅。在本文中,我们将依据十六选一数据选择器的原理,采用Quartus软件编写四种VHDL代码,以直观地展示并生成所需的波形图,这样的工作流程使得电路设计、验证与仿真更加高效、精确。每个输入信号与一组与选择信号相应的组合逻辑进行“与”运算,然后所有的这些“与”运算的结果通过一个“或”门进行汇总。简而言之,逻辑门是构建复杂逻辑功能的基石,它们通过不同的组合方式,在电子系统中发挥着数据处理、存储和传输的不可或缺的作用。
2024-06-18 00:00:00
2777
原创 《现代通信原理与技术》码间串扰和无码间串扰的眼图对比实验报告
实 验:码间串扰和无码间串扰的眼图对比实验报告摘要:在数字通信系统中,码间串扰(Inter-Symbol Interference, ISI)是影响信号质量和系统性能的重要因素之一。本实验通过MATLAB软件生成并对比了受码间串扰影响和未受码间串扰影响的数字信号的眼图。结果显示,未受码间串扰影响的眼图具有较为清晰的开口,而受码间串扰影响的眼图则由于符号间的干扰而导致开口变小,甚至闭合。通过对比这两种情况下的眼图,可以直观地观察到码间串扰对数字信号传输的影响,为理解和解决码
2024-06-17 00:00:00
2493
原创 《EDA技术》 Quartus图3—4实验报告
在本次实验中,我们对一个简单的电路进行了结构描述和数据流描述,并使用VHDL语言编写了相应的代码。然后,我们使用数据流描述方法,通过逻辑运算来描述信号之间的关系,而不需要显式地声明组件和连接。这展示了VHDL语言的灵活性,使得我们能够以不同的方式描述同一电路,并且可以根据需求选择最合适的描述方法。1.5.3.点击Overwrite Clock,在Period时钟中,A设置为50ns,B设置为100ns,C在Forcing High(1)中后面设置为1。2.1设计题3—4的VHDL程序。
2024-06-17 00:00:00
1100
原创 离散傅里叶变换(DFT)及其逆变换实验(按照下面的IDFT 算法编写MATLAB语言IFFT 程序,其中的FFT部分不用写出清单,可调用fft函数。对三角序列FFT和IFFT,验证所编程序。)
信号处理中的傅里叶变换和逆变换是频域分析的重要工具,能够将信号在时域和频域之间进行转换。本实验旨在编写MATLAB程序实现离散傅里叶逆变换(IDFT),并通过验证三角序列的FFT和IFFT来验证程序的正确性。实验,我们对离散傅里叶逆变换有了更深入的理解,并为进一步的研究和应用奠定了基础。通过比较原始序列和逆变换后的序列,验证逆变换的正确性。通过选择三角序列作为实验信号,探讨其在频域的表示,了解信号在时域和频域之间的关系。进行比较,结果表明,逆变换后的序列在数值上与原始序列相符,证明了程序的有效性。
2024-06-16 00:00:00
1722
原创 自动控制理论---离散傅里叶变换(DFT)进行信号谱分析
注意:在实验中,可以使用MATLAB的`fft`函数进行DFT计算,并使用`abs`和`angle`函数获取幅度和相位信息。离散傅里叶变换(DFT)是一种将离散信号从时域转换到频域的方法,可用于分析信号的频谱。幅频特性表示信号在频率域上的幅度分布,相频曲线表示信号在频率域上的相位分布。选择合适的变换区间长度N,对给定信号进行谱分析,并绘制幅频特性和相频曲线。使用MATLAB编程实现DFT,计算并绘制每个信号的幅频特性和相频曲线。在MATLAB界面下调试程序,确保程序运行正确,并查看绘制的谱分析图。
2024-06-15 00:00:00
653
原创 自动控制理论---线性时不变系统的单位脉冲响应
注意:在实验中,可以使用MATLAB的循环结构和数组操作来计算差分方程的响应。合并系统的响应时,注意考虑系统的连接方式。最后,绘制h(n)的图形以观察整个系统的单位脉冲响应。根据系统T3和T4的差分方程,采用MATLAB编程计算它们的单位脉冲响应y3(n)和y(n)。在MATLAB界面下调试程序,确保程序运行正确,并查看计算得到的单位脉冲响应h(n)。根据系统T1和T2的定义,编写MATLAB代码分别计算h1(n)和h2(n)。将系统T3和T4的单位脉冲响应合并,计算整个系统的单位脉冲响应h(n)。
2024-06-15 00:00:00
706
原创 2、给出五种并行计算机体系结构的名称,并分别画出其典型结构。
④分布式共享存储器多机系统(DSM)③大规模并行处理机(MPP)①并行向量处理机(PVP)②对称多机系统(SMP)⑤工作站机群(COW)
2024-06-14 00:00:00
276
原创 自动控制理论---零点和极点、单位脉冲响应
注意:在实验中,可以使用MATLAB的zplane函数绘制零点和极点分布图,使用impz函数计算单位脉冲响应,并使用plot函数绘制波形图。研究四个具有相同极点分布但不同零点分布的二阶系统对单位脉冲响应的影响。零点和极点分布反映了系统的稳定性和动态特性,对单位脉冲响应有一定影响。根据给定的四个二阶系统的传递函数,分别绘制各系统的零点和极点分布图。对比分析四个系统的零点分布对单位脉冲响应的影响,观察系统的动态特性。单位脉冲响应是系统对单位脉冲输入的输出,是系统的重要性能指标之一。
2024-06-14 00:00:00
1029
原创 自动控制理论实验---IDFT和FFT算法的原理和MATLAB编程
题目:按照下面的IDFT 算法编写MATLAB语言IFFT 程序,其中的FFT部分不用写出清单,可调用fft函数。实验中,可以使用MATLAB的ifft函数进行逆傅里叶变换的验证,以比较两种方法得到的时域信号是否相同。验证IDFT程序的正确性,通过对单位脉冲序列、矩形序列、三角序列和正弦序列进行FFT和IFFT操作。实验中采用FFT和IFFT对不同时域信号进行频域变换和逆变换,以验证编写的MATLAB程序的正确性。定义单位脉冲序列、矩形序列、三角序列和正弦序列,并分别对它们进行FFT操作,得到频域表示。
2024-06-13 13:24:16
536
原创 《现代通信原理与技术》--数字信号的最佳接收实验报告
现代通信原理与技术》数字信号的最佳接收实验报告实验:数字信号的最佳接收实验报告目录摘要引言一、实验目的二、实验原理1、实验原理概述2、实验原理详解三、实验步骤以及流程图四、注意事项五、实验代码六、实验结果七、实验总结致谢摘要:本实验针对数字通信中的2FSK(双频移键调制)、2PSK(双相移键调制)系统以及二进制随相信号(OOK)进行了抗噪声性能的仿真研究。我们考虑了信道中加性高斯白噪声,过MATLAB。
2024-06-13 00:00:00
2298
原创 Eclipse下载安装
总的来说,Eclipse提供了强大而灵活的开发环境,支持多种编程语言,并通过丰富的插件生态满足各种开发需求。掌握Eclipse的使用技巧不仅可以提高开发效率,还能帮助更好地管理和维护项目。Eclipse是一个开源的、基于Java语言开发的可扩展集成开发工具,它不仅支持Java开发,还支持C/C++、COBOL、PHP等多种编程语言。
2024-06-12 12:28:23
603
原创 128个双路2.66GHz Intel Nehalem 四核处理器计算节点的HPC集群,其峰值计算是多少?
每个Intel Nehalem四核处理器的主频是2.66GHz,这意味着每个核每秒可以执行2.66×10^9次操作。每个计算节点是双路的,即每个节点有两个这样的处理器,因此每个节点的峰值计算能力就是2×(4×2.66×10^9)。每个处理器有四个核心,所以每个处理器每秒可以执行的操作次数是4×2.66×10^9。,所以整个集群的峰值计算能力就是128×4×2×(4×2.66×10^9)即10895.36 GFLOPS GFlops GFlop/s。整个集群由128个这样的计算节点组成,
2024-06-12 00:00:00
438
原创 给出五个基本的并行计算模型,并说明其各自的优缺点。
又称 SIMD-SM 模型,也称为共享存储的 SIMD 模型,是一种抽象的并行计算模型,它是从串行的 RAM 模型直接发展起来的。(4) 类似于 H-PRAM 模型的层次结构, C3 模型给编程者提供了 K 级路由算法的思路,即系统被分为 K 级子系统,各级子系统的操作相互独立,用超步代替了 H-PRAM 中的 Sub PRAM 进行分割。优点:捕捉了 MPC 的通讯瓶颈,隐藏了并行机的网络拓扑、路由、协议,可以应用到共享存储、消息传递、数据并行的编程模型中。缺点:难以进行算法描述、设计和分析。
2024-06-11 17:44:51
966
原创 一个串行程序,94%的执行时间花费在一个可以并行化的函数中。现使其并行化,问该并行程序在10个处理机上执行所能达到的加速比是多少?能达到的最大加速比是多少?2)一个并行程序,在单个处理机上执行,6
1)一个串行程序,94%的执行时间花费在一个可以并行化的函数中。现使其并行化,问该并行程序在10个处理机上执行所能达到的。2)一个并行程序,在单个处理机上执行,6%的时间花费在一个I/O函数中,问要达到加速比10,至少需要多少个处理机?能达到的最大加速比是多少?
2024-06-11 17:43:27
433
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人