TOPSIS (Technique for Order Preference by Similarity to an Ideal Solution )法是C.L.Hwang和K.Yoon于1981年首次提出,TOPSIS法根据有限个评价对象与理想化目标的接近程度进行排序的方法,是在现有的对象中进行相对优劣的评价。TOPSIS法是一种逼近于理想解的排序法,该方法只要求各效用函数具有单调递增(或递减)性就行。TOPSIS法是多目标决策分析中一种常用的有效方法,又称为优劣解距离法。
基本过程为先将原始数据矩阵统一指标类型(一般正向化处理) 得到正向化的矩阵,再对正向化的矩阵进行标准化处理以消除各指标量纲的影响,并找到有限方案中的最优方案和最劣方案,然后分别计算各评价对象与最优方案和最劣方案间的距离,获得各评价对象与最优方案的相对接近程度,以此作为评价优劣的依据。该方法对数据分布及样本含量没有严格限制,数据计算简单易行。
第一步:将原始矩阵正向化
与前面我们说的层次分析法类似,需要一些指标来判断。
最常见的四种指标:
(所谓的将原始矩阵正向化,就是要将所有的指标类型统一转化为极大型指标。)
极小型指标转换为极大型指标的公式:
(如果所有的元素均为正数,那么也可以使用)
中间型指标:
指标值既不要太大也不要太小,取某特定值最好(如水质量评估PH值)
{a}是一组中间型指标序列,且最佳的数值为best,那么正向化的公式如下:
第二步:正向化矩阵标准化(标准化的目的是消除不同指标量纲的影响。)
假设有n个要评价的对象,m个评价指标(已经正向化了)构成的正向化矩阵如下: