熵值TOPSIS


最近闲来无事,想起之前发了熵值法和TOPSIS法的python代码,但是熵值法和TOPSIS法结合又是怎样的呢?小编接下来将为大家讲述熵值TOPSIS的步骤,具体代码大家自行编制吧。哈哈哈。

在这里插入图片描述
其中 ,
在这里插入图片描述
表示第 i 个样本第 j 项评价指标的数值。

对于某项指标,Xj 样本的离散程度越大,则该指标在综合评价中所起的作用就越大。如果该指标的标志值全部相等,则表示该指标在综合评价中不起作用。

第一步,采用熵值法确定权重。
(一)数据归一化处理

为消除因量纲不同对评价结果的影响,需要对各指标进行归一化或者标准化处理。

在这里插入图片描述

Pij 第 j 个指标中第 i 个样本标志值的比重

(二)计算信息熵

在这里插入图片描述

TOPSIS综合评价是一种用于决策分析的方,可以帮助确定最佳选择。在Python中,可以使用和TOPSIS结合来实施这种方。首先,需要进行数据归一化处理,使得不同指标的数据在相同的尺度上。然后,计算每个指标的信息,以确定各指标的权重。接下来,计算每个方案到正理想解和负理想解的距离,并计算综合评价。最后,根据综合评价确定最佳选择。 具体的步骤如下: 1. 数据归一化处理:将原始数据进行归一化处理,确保不同指标的取范围相同,例如使用Min-Max归一化或Z-score归一化等方。 2. 计算信息:根据归一化后的数据,计算每个指标的信息,以确定各指标的权重。信息越大,表示该指标的离散程度越大,权重越大。 3. 计算加权后的矩阵:将数据矩阵与权重进行加权,得到加权后的矩阵。 4. 确定正理想解和负理想解:根据加权后的矩阵,确定正理想解和负理想解。正理想解是指在每个指标上取得最大的解,负理想解是指在每个指标上取得最小的解。 5. 计算各方案到正(负)理想解的距离:计算每个方案到正理想解和负理想解的距离,可以使用欧氏距离或其他距离度量方。 6. 计算综合评价:根据距离计算综合评价综合评价越大,表示方案越优。 7. 根据综合评价确定最佳选择:根据综合评价的大小,确定最佳选择。 以上是TOPSIS综合评价在Python中的一般步骤,具体的实现可以参考相关的Python库或代码示例。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [TOPSIS](https://blog.csdn.net/weixin_43196531/article/details/111053889)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [TOPSIS综合评价模型Python实现](https://blog.csdn.net/weixin_41187013/article/details/128933759)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值