Matlab中的插值算法

  • 前言:

 

数模比赛中,常常需要根据已知的函数点进行数据、模型的处理和分析,而有时候现有的数据是极少的,不足以支撑分析的进行,这时就需要使用一些数学的方法,“模拟产生”一些新的但又比较靠谱的值来满足需求,这就是插值的作用 

(高次插值会产生龙格现象,即在两端处波动极大,产生明显的震荡。在不熟悉曲线运动趋势的前提下,不要轻易使用高次插值。)

  •  插值基本概念:

在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。

早在6世纪,中国的刘焯已将等距二次插值用于天文计算。17世纪之后,I.牛顿,J.-L.拉格朗日分别讨论了等距和非等距的一般插值公式。在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。

插值问题的提法是:假定区间[a,b]上的实值函数f (x)在该区间上 n+1个互不相同点x0,xl.. xn 处的值是f [x0].... f (xn),要求估算f(x)在[a,b]中某点的值。其做法是:在事先选定的一个由简单函数构成的有n+1个参数Co,Cl,...Cn的函数类(Co,C1,... Cn)中求出满足条件P(xi)=f (xi)(i=0,1,..n)的函数P(x),并以P()作为f()的估值。此处f(x)称为被插值函数,c0,xl,.... xn称为插值结(节)点,(CO.C1,...Cn)称为插值函数类,上面等式称为插值条件,(C0,... Cn)中满足上式的函数称为插值函数,R(x)= f(x)一P(x)称为插值余项。当估算点属于包含x0,Xl..xn的最小闭区间时,相应的插值称为内插,否则称为外插。

  • 插值的类型: 
  1. 多项式插值
  2. 埃尔米特插值
  3. 分段插值与样条插值
  4. 三角函数插值
  5. 三次样条插值

以下介绍常用的插值法: 

多项式插值:

这是最常见的一种函数插值。在一般插值问题中,若选取o为n次多项式类,由插值条件可以唯一确定一个n次插值多项式满足上述条件。从几何上看可以理解为:已知平面上n+1个不同点,要寻找一条n次多项式曲线通过这些点。插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。

拉格朗日插值:

是n次多项式插值,解题方法是先构造插值基函数再求n次插值多项式。对Lagrange n次插值多项式,首先要选取n+1个插值点上的n次插值基函数:(i=0,1,2...,n)有了这n+1个n次插值基函数,就能很容易的写出n次Lagrange插值多项式了,其具体的表达式为

牛顿插值:

牛顿插值也是n次多项式插值,提出了构造插值多项式的另一种方法。它具有继承性和易变化节点的特点。

构造的牛顿插值多项式为:

用上式插值时,首先要计算各阶差商,而各阶差商的计算可以归纳为一阶差商的逐次计算,一般的

 余项为:

其中ω(x)=(x-x0)(x-x1)...(x-xn)

分段线性插值:

分段线性插值的意义在于克服拉格朗日插值法的非收敛性。其实分段线性插值就是利用每两个相邻的插值基点做线性插值,就可以得到分段线性插值函数:

其中

设分段线性插值函数为y(x),则具有以下性质:

①y(x)可以分段表示并且在每个小区间上都是线性函数;②y,(x)= f(x)=f,,(i =0,1,2.... ); 

,(i =0,1,2.... )

③y(x)在整个区间[a,b]上连续

分段三次Hermite插值:

对于函数f(x),有时我们不仅知道它在一些点处的函数值,而且还能知道它在这些点的导数值。当在这些点上的插值函数P(x)的函数值和导数值同时满足与f(x)的函数值和导数值相等的要求时,此时的问题就是Hermite插值问题或带有导数的插值问题。

假定已知函数f(x)在插值区间[p,q]上的n+1个互不相同的节点xi (i = 0,1...)处满足,如果函数G(x)的存在满足下列条件:

G(x)在每个小区间上的多项式次数为3

就称G(x)是f(x)在n+ 1个节点上的分段三次埃尔米特插值多项式。故有:




样条插值函数:

利用样条插值方法得到的插值曲线光滑性好,但却不收敛。由此我们可以引用三次样条函数以达到插值函数的收敛性且光滑度也更好了。

对于给定区间[p,q]上这n+l个节点和在这些点上的函数值 f(xi)= y, (i = 0,1...,n),若函数g(x)满足:

①在每个子区间 上,多项式g(x)的次数不超过3

,上连续

③满足的插值条件

则g(x)是函数f(x)关于n个节点处的三次样条插值函数

 部分插值算法Matlab代码如下:

% 分段三次埃尔米特插值
x = -pi:pi; y = sin(x); 
new_x = -pi:0.1:pi;
p = pchip(x,y,new_x);
figure(1);
plot(x, y, 'o', new_x, p, 'r-')

% 三次样条插值和分段三次埃尔米特插值的对比
x = -pi:pi; 
y = sin(x); 
new_x = -pi:0.1:pi;
p1 = pchip(x,y,new_x);   %分段三次埃尔米特插值
p2 = spline(x,y,new_x);  %三次样条插值
figure(2);
plot(x,y,'o',new_x,p1,'r-',new_x,p2,'b-')
legend('样本点','三次埃尔米特插值','三次样条插值','Location','SouthEast')   

% n维数据的插值
x = -pi:pi; y = sin(x); 
new_x = -pi:0.1:pi;
p = interpn (x, y, new_x, 'spline');
% 等价于 p = spline(x, y, new_x);
figure(3);
plot(x, y, 'o', new_x, p, 'r-')

 

MATLAB,图像插值是一种常见的处理图像数据的技术,用于在图像的像素之间插入新的数据点,以提高图像的分辨率或平滑图像。MATLAB提供了多种图像插值方法,包括: 1. **nearest neighbor(最近邻插值)**:最简单的插值方法,每个新点的值取其最近的像素值,适用于简单放大或缩小图像。 2. **bilinear interpolation(双线性插值)**:基于四个相邻像素进行插值,适用于小范围的放大,保持了图像的连续性。 3. **bicubic interpolation(双三次样条插值)**:更复杂的方法,使用九个相邻像素的权重进行插值,效果比双线性更平滑,适用于更大的放大比例。 4. **imresize() 函数**:MATLAB内建函数,提供了一种灵活的方式来调整图像尺寸,可以根据不同插值模式如'nearest', 'linear', 'cubic'等选择插值方法。 5. **imageinterpolation toolbox(图像插值工具箱)**:MATLAB专用工具箱,提供了更多的高级插值算法,如sinc插值、lanczos插值等,适用于专业图像处理需求。 6. **Nearest Neighbour Interpolation(最近邻内插)**:这种插值方法不考虑像素间的空间关系,仅按位置选取最近的像素。 要使用这些方法,通常你需要将原始图像转换为插值后的图像,例如: ```matlab % 加载图像 img = imread('your_image.jpg'); % 使用bicubic插值放大图像 resized_img = imresize(img, [new_size new_size], 'bicubic'); % 或者直接指定插值模式 resized_img = imresize(img, [new_size new_size], 'cubic'); ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值