微积分之八——级数整理

一. 无穷级数常用级数

1. 一些基本级数

  1. 几何级数(等比级数)
    ∑ n = 0 ∞ a q n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n + ⋅ ⋅ ⋅ ( a ≠ 0 ) s n = a + a q + a q 2 + ⋅ ⋅ ⋅ + a q n − 1 = a ⋅ 1 − q n 1 − q { ∣ q ∣ < 1 , 级 数 收 敛 ∣ q ∣ > 1 , 级 数 发 散 q = 1 , S n = n a → ∞ 级 数 发 散 q = − 1 , S n = { a , n 为 奇 数 0 , n 为 偶 数 , 所 以 n → ∞ 时 S n 不 趋 于 稳 定 值 , 级 数 发 散 \begin{aligned} &\sum_{n=0}^\infty aq^n=a+aq+aq^2+\cdot\cdot\cdot+aq^n+\cdot\cdot\cdot(a\neq0)\\ &s_n=a+aq+aq^2+\cdot\cdot\cdot+aq^{n-1}=a\cdot\frac{1-q^n}{1-q}\\ &\begin{cases} |q|<1,级数收敛\\ |q|>1,级数发散\\ q=1,S_n=na\to\infty 级数发散\\ q=-1,S_n=\begin{cases}a,n为奇数\\0,n为偶数\end{cases},所以n\to\infty时S_n不趋于稳定值,级数发散 \end{cases} \end{aligned} n=0aqn=a+aq+aq2++aqn+(a=0)sn=a+aq+aq2++aqn1=a1q1qnq<1,q>1,q=1,Sn=naq=1,Sn={a,n0,nnSn
  2. 调和级数
    ∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n + ⋅ ⋅ ⋅ \sum_{n=1}^\infty\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}+\cdot\cdot\cdot n=1n1=1+21+31++n1+
    n → ∞ 时 一 般 项 1 n → 0 是 趋 于 零 的 , 但 级 数 发 散 n\to \infty 时 一般项\frac{1}{n}\to 0是趋于零的,但级数发散 nn10
  3. p p p级数
    ∑ n = 1 ∞ 1 n p = 1 + 1 2 p + 1 3 p + ⋅ ⋅ ⋅ + 1 n p + ⋅ ⋅ ⋅ { p ≤ 1 , 发 散 p > 1 , 收 敛 \sum_{n=1}^\infty\frac{1}{n^p}=1+\frac{1}{2^p}+\frac{1}{3^p}+\cdot\cdot\cdot+\frac{1}{n^p}+\cdot\cdot\cdot \qquad \begin{cases} p\leq1,发散\\ p>1,收敛 \end{cases} n=1np1=1+2p1+3p1++np1+{p1,p>1,

2. 一些特殊的常数项级数的和

∑ n = 1 ∞ ( − 1 ) n − 1 n = 1 − 1 2 + 1 3 − 1 4 + 1 5 − 1 6 ⋯ + ( − 1 ) n − 1 n + ⋯ = l n 2 ∑ n = 1 ∞ 1 n 2 = 1 + 1 2 2 + 1 3 2 + 1 4 2 + 1 5 2 + ⋯ + 1 n 2 + ⋯ = π 2 6 ∑ n = 1 ∞ 1 ( 2 n ) 2 = 1 2 2 + 1 4 2 + 1 6 2 + 1 8 2 + ⋯ + 1 ( 2 n ) 2 + ⋯ = π 2 24 ∑ n = 1 ∞ 1 ( 2 n − 1 ) 2 = 1 + 1 3 2 + 1 5 2 + 1 7 2 + 1 9 2 + ⋯ + 1 ( 2 n − 1 ) 2 + ⋯ = π 2 8 ∑ n = 1 ∞ ( 1 ( 2 n − 1 ) 2 − 1 ( 2 n ) 2 ) = 1 − 1 2 2 + 1 3 2 − 1 4 2 + 1 5 2 − 1 6 2 + ⋯ + 1 ( 2 n − 1 ) 2 − 1 ( 2 n ) 2 + ⋯ = π 2 12 \boxed{ \begin{aligned} \sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}&=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}\cdots+\frac{(-1)^{n-1}}{n}+\cdots&=ln 2\\ \sum_{n=1}^{\infty}\frac{1}{n^2} &=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+\cdots+\frac{1}{n^2}+\cdots&=\frac{\pi^2}{6}\\ \sum_{n=1}^{\infty}\frac{1}{(2n)^2} &=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\cdots+\frac{1}{(2n)^2}+\cdots&=\frac{\pi^2}{24}\\ \sum_{n=1}^{\infty}\frac{1}{(2n-1)^2} &=1+\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+\frac{1}{9^2}+\cdots+\frac{1}{(2n-1)^2}+\cdots&=\frac{\pi^2}{8}\\ \sum_{n=1}^{\infty}(\frac{1}{(2n-1)^2}-\frac{1}{(2n)^2}) &=1-\frac{1}{2^2}+\frac{1}{3^2}-\frac{1}{4^2}+\frac{1}{5^2}-\frac{1}{6^2}+\cdots+\frac{1}{(2n-1)^2}-\frac{1}{(2n)^2}+\cdots&=\frac{\pi^2}{12}\\ \end{aligned} } n=1n(1)n1n=1n21n=1(2n)21n=1(2n1)21n=1((2n1)21(2n)21)=121+3141+5161+n(1)n1+=1+221+321+421+521++n21+=221+421+621+821++(2n)21+=1+321+521+721+921++(2n1)21+=1221+321421+521621++(2n1)21(2n)21+=ln2=6π2=24π2=8π2=12π2

3. 一些基本幂级数展开式及展开式成立区间

1 1 − x = ∑ n = 0 ∞ x n , x ∈ ( − 1 , 1 ) e x = ∑ n = 0 ∞ x n n ! , x ∈ ( − ∞ , + ∞ ) e z = ∑ n = 0 ∞ z n n ! , ( z 为 复 数 且 ∣ z ∣ < + ∞ ) s i n x = ∑ n = 1 ∞ ( − 1 ) n − 1 ( 2 n − 1 ) ! x 2 n − 1 , x ∈ ( − ∞ , + ∞ ) c o s x = ∑ n = 0 ∞ ( − 1 ) n ( 2 n ) ! x 2 n , x ∈ ( − ∞ , + ∞ ) l n ( 1 + x ) = ∑ n = 1 ∞ ( − 1 ) n − 1 n x n , x ∈ ( − 1 , 1 ] a r c t a n x = ∑ n = 1 ∞ ( − 1 ) n 2 n + 1 x 2 n + 1 , x ∈ [ − 1 , 1 ] 1 + x = 1 + 1 2 x + ∑ n = 2 ∞ ( − 1 ) n − 1 ( 2 n − 3 ) ! ! ( 2 n ) ! ! x n , x ∈ [ − 1 , 1 ] 1 1 + x = 1 + ∑ n = 1 ∞ ( − 1 ) n ( 2 n − 1 ) ! ! ( 2 n ) ! ! x n , x ∈ ( − 1 , 1 ] n ! ! 为 从 1 开 始 数 值 不 超 过 n 并 且 与 n 有 相 同 奇 偶 性 的 自 然 数 的 乘 积 , z 比 如 说 8 ! ! = 2 ∗ 4 ∗ 6 ∗ 8 9 ! ! = 1 ∗ 3 ∗ 5 ∗ 7 ∗ 9 z \boxed{ \begin{aligned} \frac{1}{1-x}&=\sum_{n=0}^{\infty}x^n, &x\in(-1,1)\\ e^x&=\sum_{n=0}^{\infty}\frac{x^n}{n!},&x\in(-\infty,+\infty)\\ e^z&=\sum_{n=0}^{\infty}\frac{z^n}{n!},&(z为复数且|z|<+\infty)\\ sinx&=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{(2n-1)!}x^{2n-1},&x\in(-\infty,+\infty)\\ cosx&=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{(2n)!}x^{2n},&x\in(-\infty,+\infty)\\ ln(1+x)&=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^{n},&x\in(-1,1]\\ arctanx&=\sum_{n=1}^{\infty}\frac{(-1)^{n}}{2n+1}x^{2n+1},&x\in[-1,1]\\ \sqrt{1+x}&=1+\frac{1}{2}x+\sum_{n=2}^\infty\frac{(-1)^{n-1}(2n-3)!!}{(2n)!!}x^n,&x\in [-1,1]\\ \frac{1}{\sqrt{1+x}}&=1+\sum_{n=1}^\infty\frac{(-1)^n(2n-1)!!}{(2n)!!}x^n,&x\in(-1,1]\\ \color{blue}n!!为从1&\color{blue}开始数值不超过n并且与n有相同奇偶性的自然数的乘积,&z\\ \color{blue}比如说8!!&\color{blue}=2*4*6*8\quad9!!=1*3*5*7*9 &z \end{aligned} } 1x1exezsinxcosxln(1+x)arctanx1+x 1+x 1n!!18!!=n=0xn,=n=0n!xn,=n=0n!zn,=n=1(2n1)!(1)n1x2n1,=n=0(2n)!(1)nx2n,=n=1n(1)n1xn,=n=12n+1(1)nx2n+1,=1+21x+n=2(2n)!!(1)n1(2n3)!!xn,=1+n=1(2n)!!(1)n(2n1)!!xn,nn=24689!!=13579x(1,1)x(,+)(zz<+)x(,+)x(,+)x(1,1]x[1,1]x[1,1]x(1,1]zz
( 1 + x ) α = { ∑ k = 0 n ( n k ) ( 1 ) k x n − k ( n = α , α ∈ Z + , x ∈ R ) α 为 正 整 数 那 这 其 实 就 是 我 们 常 说 的 二 项 式 展 开 定 理 1 + ∑ n = 1 ∞ α ( α − 1 ) ⋯ ( α − n + 1 ) n ! x n ( α ∈ R \ Z + , 即 除 了 正 整 数 的 全 部 实 数 , x ∈ ( − 1 , 1 ) , 对 于 端 点 ± 1 需 要 根 据 α 的 取 值 来 判 断 ) (1+x)^\alpha= \begin{cases} \displaystyle\sum_{k=0}^n{n \choose k}(1)^kx^{n-k}\quad&(n=\alpha,\alpha\in Z^+,x\in R)\alpha为正整数那这其实就是我们常说的二项式展开定理\\ 1+\displaystyle\sum_{n=1}^\infty\frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}x^n&(\alpha\in R\backslash Z^+,即除了正整数的全部实数, x\in (-1,1),对于端点\plusmn1需要根据\alpha的取值来判断) \end{cases}\\ (1+x)α=k=0n(kn)(1)kxnk1+n=1n!α(α1)(αn+1)xn(n=α,αZ+,xR)α(αR\Z+,x(1,1),±1α)

4. 斯特林公式

n ! ≈ 2 π n ( n e ) n l i m n → + ∞ n ! 2 π n ( n e ) n = 1 l i m n → + ∞ e n n ! n n ⋅ n = 2 π \begin{aligned} &n!\approx\sqrt{2\pi n}(\frac{n}{e})^n\\ &\underset{n\to+\infty}{lim}\frac{n!}{\sqrt{2\pi n}(\frac{n}{e})^n}=1\\ &\underset{n\to+\infty}{lim}\frac{e^n n!}{n^n\cdot \sqrt{n}}=\sqrt{2\pi}\\ \end{aligned} n!2πn (en)nn+lim2πn (en)nn!=1n+limnnn enn!=2π

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值