微积分之七——欧拉公式与傅里叶级数

一. 无穷级数

1. 函数的幂级数展开式的应用

1). 欧拉公式

欧拉公式主要是通过复变量幂级数推导出来的
e z = ∑ n = 0 ∞ z n n ! ⇒ 代入纯虚数的复数变量 z = y i e y i = ∑ n = 0 ∞ ( y i ) n n ! ⇒ 进行幂级数展开后整理 e y i = ( 1 − 1 2 ! y 2 + 1 4 ! y 4 − ⋯   ) + i   ( y − 1 3 ! y 3 + 1 5 ! y 5 − ⋯   ) ⇓ 欧拉公式 = { e x i = c o s x + i   s i n x e − x i = c o s x − i   s i n x    ⟹    { c o s x = e x i + e − x i 2 s i n x = e x i − e − x i 2 i \begin{aligned} e^z=\sum_{n=0}^{\infty}\frac{z^n}{n!} \xRightarrow{代入纯虚数的复数变量z=yi} e^{yi}=\sum_{n=0}^{\infty}\frac{(yi)^n}{n!} \xRightarrow{进行幂级数展开后整理} e^{yi}=(1-\frac{1}{2!}y^2+\frac{1}{4!}y^4-\cdots)&+i\,(y-\frac{1}{3!}y^3+\frac{1}{5!}y^5-\cdots)\\ {\LARGE\Downarrow}\\ 欧拉公式=&\begin{cases} e^{xi}&\displaystyle =cosx+i\,sinx\\ e^{-xi}&\displaystyle =cosx-i\,sinx\\ \end{cases}&\implies \begin{cases} cosx&\displaystyle =\frac{e^{xi}+e^{-xi}}{2}\\ sinx&\displaystyle =\frac{e^{xi}-e^{-xi}}{2i}\\ \end{cases} \end{aligned} ez=n=0n!zn代入纯虚数的复数变量z=yi eyi=n=0n!(yi)n进行幂级数展开后整理 eyi=(12!1y2+4!1y4)欧拉公式=+i(y3!1y3+5!1y5){exiexi=cosx+isinx=cosxisinx cosxsinx=2exi+exi=2iexiexi

2). 傅里叶级数

设定周期为 2 π 2\pi 2π的周期函数 f ( x ) f(x) f(x)满足狄利克雷充分条件,则 f ( x ) f(x) f(x)的傅里叶级数为
a 0 2 + ∑ k = 1 ∞ ( a n c o s   k x + b n s i n   k x ) , k = 1 , 2 , 3 , 4 , … \frac{a_0}{2}+\sum_{k=1}^\infty(a_ncos\ kx + b_nsin\ kx),k=1,2,3,4,\ldots\\ 2a0+k=1(ancos kx+bnsin kx),k=1,2,3,4,
傅里叶级数的主要应用是对信号的拟合,既然需要拟合自然需要算出基函数的系数,这便是傅里叶系数,而这也是使用傅里叶级数拟合时最主要的计算工程,对于傅里叶系数的求取以及傅里叶级数的表达式通过线性代数的正交基概念来阐述会更加的清晰。
在周期连续函数 f ( x ) 的向量空间中定义两个周期为 T 函数 f ( x ) , g ( x ) 的向量内积为 < f ( x ) , g ( x ) > = 1 ω ∫ − T T f ( x ) g ( x ) d x ω 是一个常数,其满足向量内 积的所有性质,由此我们定义了一个关于周期连续函数向量的内积空间 而在傅里叶级数中, 为了使得三角函数作为规范正交基使用,取其为 T ,即 < f ( x ) , g ( x ) > = 1 T ∫ − T T f ( x ) g ( x ) d x \boxed{ \begin{aligned} 在周期连续函数f(x)&的向量空间中定义两个周期为T函数f(x),g(x)的向量内积为\\ &<f(x),g(x)>=\frac{1}{\omega}\int_{-T}^Tf(x)g(x)dx\\ \omega是一个常数,其满足向量内&积的所有性质,由此我们定义了一个关于周期连续函数向量的内积空间\\ 而在傅里叶级数中,&为了使得三角函数作为规范正交基使用,取其为T,即\\ &<f(x),g(x)>=\frac{1}{T}\int_{-T}^Tf(x)g(x)dx\\ \end{aligned} } 在周期连续函数f(x)ω是一个常数,其满足向量内而在傅里叶级数中,的向量空间中定义两个周期为T函数f(x),g(x)的向量内积为<f(x),g(x)>=ω1TTf(x)g(x)dx积的所有性质,由此我们定义了一个关于周期连续函数向量的内积空间为了使得三角函数作为规范正交基使用,取其为T,即<f(x),g(x)>=T1TTf(x)g(x)dx
在定义了周期连续函数的向量内积后,我们可以很容易证明向量集 { 2 2 , c o s x , s i n x , c o s 2 x , s i n 2 x , c o s 3 x , s i n 3 x … c o s n x , s i n n x } 是规范正交集, 即它们满足 { 与自己的内积为 1 { 1 T ∫ − T T 2 2 ⋅ 2 2 d x = 1 1 T ∫ − T T c o s 2 k x   d x = 1   ( k = 0 , 1 , 2 , 3 , … ) 1 T ∫ − T T s i n 2 k x   d x = 1   ( k = 0 , 1 , 2 , 3 , … ) 与集合内其他任何向量的内积为 0 { 1 T ∫ − T T 2 2 ⋅ c o s k x d x = 0   ( k = 0 , 1 , 2 , 3 , … ) 1 T ∫ − T T 2 2 ⋅ s i n k x d x = 0   ( k = 0 , 1 , 2 , 3 , … ) 1 T ∫ − T T c o s k x s i n n x   d x = 0   ( k , n = 0 , 1 , 2 , 3 , … ) 1 T ∫ − T T s i n k x s i n n x   d x = 0   ( k , n = 0 , 1 , 2 , 3 , … 且 k ≠ n ) 1 T ∫ − T T c o s k x c o s n x   d x = 0   ( k , n = 0 , 1 , 2 , 3 , … 且 k ≠ n ) \boxed{ \begin{aligned} &在定义了周期连续函数的向量内积后,我们可以很容易证明向量集\\ &\{\frac{\sqrt{2}}{2},cosx,sinx,cos2x,sin2x,cos3x,sin3x\ldots cosnx,sinnx\}是规范正交集,\\ &即它们满足 \begin{cases} 与自己的内积为1 &\begin{cases} \frac{1}{T}\int_{-T}^T\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{2}}{2}dx=1\\ \frac{1}{T}\int_{-T}^Tcos^2kx\,dx=1\,(k=0,1,2,3,\ldots)\\ \frac{1}{T}\int_{-T}^Tsin^2kx\,dx=1\,(k=0,1,2,3,\ldots) \end{cases}\\ 与集合内其他任何向量的内积为0 &\begin{cases} \frac{1}{T}\int_{-T}^T\frac{\sqrt{2}}{2}\cdot coskxdx=0\,(k=0,1,2,3,\ldots)\\ \frac{1}{T}\int_{-T}^T\frac{\sqrt{2}}{2}\cdot sinkxdx=0\,(k=0,1,2,3,\ldots)\\ \frac{1}{T}\int_{-T}^Tcoskxsinnx\,dx=0\,(k,n=0,1,2,3,\ldots)\\ \frac{1}{T}\int_{-T}^Tsinkxsinnx\,dx=0\,(k,n=0,1,2,3,\ldots且k\neq n)\\ \frac{1}{T}\int_{-T}^Tcoskxcosnx\,dx=0\,(k,n=0,1,2,3,\ldots且k\neq n) \end{cases}\\ \end{cases} \end{aligned} } 在定义了周期连续函数的向量内积后,我们可以很容易证明向量集{22 ,cosx,sinx,cos2x,sin2x,cos3x,sin3xcosnx,sinnx}是规范正交集,即它们满足 与自己的内积为1与集合内其他任何向量的内积为0 T1TT22 22 dx=1T1TTcos2kxdx=1(k=0,1,2,3,)T1TTsin2kxdx=1(k=0,1,2,3,) T1TT22 coskxdx=0(k=0,1,2,3,)T1TT22 sinkxdx=0(k=0,1,2,3,)T1TTcoskxsinnxdx=0(k,n=0,1,2,3,)T1TTsinkxsinnxdx=0(k,n=0,1,2,3,k=n)T1TTcoskxcosnxdx=0(k,n=0,1,2,3,k=n)

我们已经知道空间内的向量在规范正交基向量上的投影系数便是两者的内积, 于是对于一个被拟合的函数 f ( x ) ,在求取系数时直接将两者求内积即可,求取系数之后, 将系数乘以相对应的基函数然后全部相加便是原函数的傅里叶级数表达式 { a 0 = 1 T ∫ − T T 2 2 ⋅ f ( x )   d x a k = 1 T ∫ − T T f ( x ) c o s k x   d x   ( k = 0 , 1 , 2 , 3 , … ) b k = 1 T ∫ − T T f ( x ) s i n k x   d x   ( k = 0 , 1 , 2 , 3 , … ) ⇒ 求出傅里叶级数中的各项 { a 0 ⋅ 2 2 = 1 2 T ∫ − T T f ( x )   d x a k ⋅ c o s   k x = 1 T ∫ − T T f ( x ) c o s k x   d x ⋅ c o s   k x   ( k = 0 , 1 , 2 , 3 , … ) b k ⋅ s i n   k x = 1 T ∫ − T T f ( x ) s i n k x   d x ⋅ s i n   k x   ( k = 0 , 1 , 2 , 3 , … ) 可以看出对于 < f ( x ) , 2 2 > ⋅ 2 2 与 1 2 ⋅ < f ( x ) , 1 > ⋅ 1 两者的结果是一样的, 所以为了方便经常使用 a 0 = < f ( x ) , 1 > 以及 a 0 2 来表示傅里叶级数的第一个项 \boxed{ \begin{aligned} &我们已经知道空间内的向量在规范正交基向量上的投影系数便是两者的内积,\\ &于是对于一个被拟合的函数f(x),在求取系数时直接将两者求内积即可,求取系数之后,\\ &将系数乘以相对应的基函数然后全部相加便是原函数的傅里叶级数表达式\\ & \begin{cases} a_0&=\frac{1}{T}\int_{-T}^T\frac{\sqrt{2}}{2}\cdot f(x)\ dx\\ a_k&=\frac{1}{T}\int_{-T}^T f(x) coskx\ dx\,(k=0,1,2,3,\ldots)\\ b_k&=\frac{1}{T}\int_{-T}^T f(x) sinkx\ dx\,(k=0,1,2,3,\ldots)\\ \end{cases} \xRightarrow{求出傅里叶级数中的各项} \begin{cases} a_0\cdot \frac{\sqrt{2}}{2}&=\frac{1}{2T}\int_{-T}^Tf(x)\ dx\\ a_k\cdot cos\ kx&=\frac{1}{T}\int_{-T}^T f(x) coskx\ dx\cdot cos\ kx\,(k=0,1,2,3,\ldots)\\ b_k\cdot sin\ kx&=\frac{1}{T}\int_{-T}^T f(x) sinkx\ dx\cdot sin\ kx\,(k=0,1,2,3,\ldots)\\ \end{cases}\\ &可以看出对于<f(x),\frac{\sqrt{2}}{2}>\cdot \frac{\sqrt{2}}{2}与\frac{1}{2}\cdot <f(x),1>\cdot 1两者的结果是一样的,\\ &所以为了方便经常使用a_0 = <f(x),1>以及\frac{a_0}{2}来表示傅里叶级数的第一个项 \end{aligned} } 我们已经知道空间内的向量在规范正交基向量上的投影系数便是两者的内积,于是对于一个被拟合的函数f(x),在求取系数时直接将两者求内积即可,求取系数之后,将系数乘以相对应的基函数然后全部相加便是原函数的傅里叶级数表达式 a0akbk=T1TT22 f(x) dx=T1TTf(x)coskx dx(k=0,1,2,3,)=T1TTf(x)sinkx dx(k=0,1,2,3,)求出傅里叶级数中的各项 a022 akcos kxbksin kx=2T1TTf(x) dx=T1TTf(x)coskx dxcos kx(k=0,1,2,3,)=T1TTf(x)sinkx dxsin kx(k=0,1,2,3,)可以看出对于<f(x),22 >22 21<f(x),1>1两者的结果是一样的,所以为了方便经常使用a0=<f(x),1>以及2a0来表示傅里叶级数的第一个项
虽然已经明白了如何计算一个函数的傅里叶系数,但是对于应用而言公式仍显繁琐, 于是通过欧拉公式可以将傅里叶级数转化成复数形式来大大减少公式的复杂程度 对于周期为 2 T 的周期函数 f ( x ) 傅里叶级数为 a 0 2 + ∑ k = 1 ∞ ( a n c o s k π T x + b n s i n k π T x ) π T 的用处在于压缩或放大一个三角函数的周期,使之与原函数的周期相符合, 比如说 T = 2 而 n = 1 , x = 2 时那么 n π x T 在标准三角函数周期内的位置自然应该是 π 系数求取会变为 { a k = 1 T ∫ − T T f ( x ) c o s   k π T x   d x   ( k = 0 , 1 , 2 , 3 , … ) b k = 1 T ∫ − T T f ( x ) s i n   k π T x   d x   ( k = 0 , 1 , 2 , 3 , … ) 把欧拉公式 { c o s x = e x i + e − x i 2 s i n x = e x i − e − x i 2 i ⇒ 变形 { c o s   k π T x = e k π T i + e − k π T i 2 s i n   k π T x = e k π T i − e − k π T i 2 i ⇒ 代入傅里叶级数表达式得 a 0 2 + ∑ k = 1 ∞ ( a k − i b k 2 e i k π T x + a k + i b k 2 e − i k π T x ) 整理其中系数得 { c 0 = a 0 2 c k = a k − i b k 2 c − k = a k + i b k 2 ⇒ 代入表达式 ( c k e i k π T x ) k = 0 + ∑ k = 1 ∞ ( c k e i k π T x + c − k e − i k π T x ) ⇒ 让 k 取遍一切整数 ∑ k = − ∞ ∞ c k e i k π T x 整理得 傅里叶系数的复数形式 为 c k = 1 2 T ∫ − T T f ( x ) e − i k π T x d x ( k = 0 , ± 1 , ± 2 , ⋯   ) 以及之前所求出的 傅里叶级数的复数形式 为 ∑ k = − ∞ ∞ c k e i k π T x \begin{aligned} &虽然已经明白了如何计算一个函数的傅里叶系数,但是对于应用而言公式仍显繁琐,\\ &于是通过欧拉公式可以将傅里叶级数转化成复数形式来大大减少公式的复杂程度\\ &对于周期为2T的周期函数f(x)傅里叶级数为\\ &\qquad\qquad\qquad\qquad\qquad\frac{a_0}{2}+\sum_{k=1}^\infty(a_ncos\frac{k\pi}{T}x + b_nsin\frac{k\pi}{T}x)\\ &\frac{\pi}{T}的用处在于压缩或放大一个三角函数的周期,使之与原函数的周期相符合,\\ &比如说T=2而n=1,x=2时那么\frac{n\pi x}{T}在标准三角函数周期内的位置自然应该是\pi\\ &系数求取会变为 \begin{cases} a_k&=\frac{1}{T}\int_{-T}^T f(x) cos\,k\frac{\pi}{T}x\ dx\,(k=0,1,2,3,\ldots)\\ b_k&=\frac{1}{T}\int_{-T}^T f(x) sin\,k\frac{\pi}{T}x\ dx\,(k=0,1,2,3,\ldots)\\ \end{cases}\\ &把欧拉公式 \begin{cases} cosx&=\frac{e^{xi}+e^{-xi}}{2}\\ sinx&=\frac{e^{xi}-e^{-xi}}{2i}\\ \end{cases} \xRightarrow{变形} \begin{cases} cos\,k\frac{\pi}{T}x&=\frac{e^{k\frac{\pi}{T}i}+e^{-k\frac{\pi}{T}i}}{2}\\ sin\,k\frac{\pi}{T}x&=\frac{e^{k\frac{\pi}{T}i}-e^{-k\frac{\pi}{T}i}}{2i}\\ \end{cases} \xRightarrow{代入傅里叶级数表达式得} \frac{a_0}{2}+\sum_{k=1}^\infty(\frac{a_k-ib_k}{2}e^{i\frac{k\pi}{T}x}+\frac{a_k+ib_k}{2}e^{-i\frac{k\pi}{T}x})\\ &整理其中系数得 \begin{cases} c_0&=\frac{\displaystyle a_0}{2}\\ c_k&=\frac{\displaystyle a_k-ib_k}{2}\\ c_{-k}&=\frac{\displaystyle a_k+ib_k}{2}\\ \end{cases} \xRightarrow{代入表达式} (c_ke^{i\frac{k\pi}{T}x})_{k=0}+\sum_{k=1}^\infty(c_ke^{i\frac{k\pi}{T}x}+c_{-k}e^{-i\frac{k\pi}{T}x}) \xRightarrow{让k取遍一切整数} \sum_{k=-\infty}^\infty c_ke^{i\frac{k\pi}{T}x}\\ &整理得\textcolor{blue}{傅里叶系数的复数形式}为\displaystyle c_k=\frac{1}{2T}\int_{-T}^Tf(x)e^{-i\frac{k\pi}{T}x}dx\quad(k=0,\plusmn1,\plusmn2,\cdots)\\ &以及之前所求出的\textcolor{blue}{傅里叶级数的复数形式}为\displaystyle \sum_{k=-\infty}^\infty c_ke^{i\frac{k\pi}{T}x} \end{aligned} 虽然已经明白了如何计算一个函数的傅里叶系数,但是对于应用而言公式仍显繁琐,于是通过欧拉公式可以将傅里叶级数转化成复数形式来大大减少公式的复杂程度对于周期为2T的周期函数f(x)傅里叶级数为2a0+k=1(ancosTx+bnsinTx)Tπ的用处在于压缩或放大一个三角函数的周期,使之与原函数的周期相符合,比如说T=2n=1,x=2时那么Tx在标准三角函数周期内的位置自然应该是π系数求取会变为{akbk=T1TTf(x)coskTπx dx(k=0,1,2,3,)=T1TTf(x)sinkTπx dx(k=0,1,2,3,)把欧拉公式{cosxsinx=2exi+exi=2iexiexi变形 {coskTπxsinkTπx=2ekTπi+ekTπi=2iekTπiekTπi代入傅里叶级数表达式得 2a0+k=1(2akibkeiTx+2ak+ibkeiTx)整理其中系数得 c0ckck=2a0=2akibk=2ak+ibk代入表达式 (ckeiTx)k=0+k=1(ckeiTx+ckeiTx)k取遍一切整数 k=ckeiTx整理得傅里叶系数的复数形式ck=2T1TTf(x)eiTxdx(k=0,±1,±2,)以及之前所求出的傅里叶级数的复数形式k=ckeiTx

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值