微积分之六——无穷级数

一. 无穷级数

1. 常数项级数的概念与基本性质

1). 级数

  1. 定义:给定一个无穷数列 a 1 , a 2 , . . . , a n , . . . a_1,a_2,...,a_n,... a1,a2,...,an,...,则其和的表达式被记为(常数项)无穷级数,简称(常数项)级数
  2. 表达式: ∑ n = 1 ∞ a n = a 1 + a 2 + ⋅ ⋅ ⋅ + a n + ⋅ ⋅ ⋅ \sum_{n=1}^{\infty}a_n=a_1+a_2+\cdot\cdot\cdot+a_n+\cdot\cdot\cdot n=1an=a1+a2++an+

2). 部分和

  1. 定义:级数的前 n n n项的和称为级数的前 n n n项部分和
  2. 表达式:
    S n = { n = 1 a 1 n = 2 a 1 + a 2 n = 3 a 1 + a 2 + a 3 ⋅ ⋅ ⋅ n = ∞ a 1 + a 2 + a 3 + ⋅ ⋅ ⋅ + a n + ⋅ ⋅ ⋅ + a ∞ S_n=\begin{cases} &n=1\quad a_1\\ &n=2\quad a_1+a_2\\ &n=3\quad a_1+a_2+a_3\\ &\cdot\cdot\cdot\\ &n=\infty\quad a_1+a_2+a_3+\cdot\cdot\cdot+a_n+\cdot\cdot\cdot+a_{\infty} \end{cases} Sn=n=1a1n=2a1+a2n=3a1+a2+a3n=a1+a2+a3++an++a

3). 部分和数列

定义:所有部分和构成的一个数列称为部分和数列
表达式: ( S n ) n = 1 ∞ = { S 1 , S 2 , S 3 , . . . } (S_n)_{n=1}^{\infty}=\{S_1,S_2,S_3,...\} (Sn)n=1={S1,S2,S3,...}

4). 级数的收敛与发散

收敛:如果部分和数列 ( S n ) n = 1 ∞ (S_n)_{n=1}^{\infty} (Sn)n=1有极限 s s s,就称级数是收敛的,且把极限 s s s叫做级数的和,并记作 s = ∑ n = 1 ∞ a n s=\sum_{n=1}^\infty a_n s=n=1an
发散:如果部分和数列没有极限,就称级数是发散的
研究级数的收敛性就是研究其部分和数列是否存在极限,这一点类似于无穷极限的反常积分,所以有时候可以把极限看做是离散型的"积分"
根据性质级数收敛的话其极限值必为一个常数,
但如果级数发散的话,情况一般有两种,

  1. 一种是极限趋向于无穷大
  2. 另一种是随着一般项的不断累加,级数和会在几个常数之间连续变化,即没有定数,这也是一种发散

无穷级数的基本性质

  1. 在级数中去掉,增加或改变有限项,级数的收敛性不变
  2. k ≠ 0 k\neq 0 k=0,则级数 ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ k a n \sum_{n=1}^{\infty}a_n与\sum_{n=1}^{\infty}ka_n n=1ann=1kan同时收敛,同时发散,并且若
    ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}a_n n=1an收敛则 ∑ n = 1 ∞ k a n = k ∑ n = 1 ∞ a n \sum_{n=1}^{\infty}ka_n = k\sum_{n=1}^{\infty}a_n n=1kan=kn=1an
  3. ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty}a_n与\sum_{n=1}^{\infty}b_n n=1ann=1bn皆收敛,则 ∑ n = 1 ∞ ( a n ± b n ) \sum_{n=1}^{\infty}(a_n\pm b_n) n=1(an±bn)收敛
  4. ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty}a_n与\sum_{n=1}^{\infty}b_n n=1ann=1bn一发散,一收敛,则 ∑ n = 1 ∞ ( a n ± b n ) \sum_{n=1}^{\infty}(a_n\pm b_n) n=1(an±bn)发散
  5. ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n \sum_{n=1}^{\infty}a_n与\sum_{n=1}^{\infty}b_n n=1ann=1bn皆发散,则 ∑ n = 1 ∞ ( a n ± b n ) \sum_{n=1}^{\infty}(a_n\pm b_n) n=1(an±bn)结果不定,发散收敛都有可能
  6. ∑ n = 1 ∞ ( a n ± b n ) = ∑ n = 1 ∞ a n ± ∑ n = 1 ∞ b n \sum_{n=1}^{\infty}(a_n\pm b_n) = \sum_{n=1}^{\infty}a_n\pm \sum_{n=1}^{\infty}b_n n=1(an±bn)=n=1an±n=1bn

5). 区域级数

有一无穷级数 ∑ n = 1 ∞ a n = a 1 + a 2 + a 3 + a 4 + a 5 + a 6 + a 7 + a 8 + ⋅ ⋅ ⋅ \sum_{n=1}^{\infty}a_n=a_1+a_2+a_3+a_4+a_5+a_6+a_7+a_8+\cdot\cdot\cdot n=1an=a1+a2+a3+a4+a5+a6+a7+a8+若现在将级数按区域划分,并将区域的内的一般项首先求和,那么所得到的的和将变为新的一般项,于是将会的到一个新的无穷级数。比如对于上式无穷级数
b 1 = a 1 + a 2 + a 3 + a 4 b 2 = a 5 + a 6 + a 7 + a 8 ⋅ ⋅ ⋅ b n = a 4 n − 3 + a 4 n − 2 + a 4 n − 1 + a 4 n ⋅ ⋅ ⋅ \begin{aligned} &b_1=a_1+a_2+a_3+a_4\\ &b_2=a_5+a_6+a_7+a_8\\ &\cdot\cdot\cdot\\ &b_n=a_{4n-3}+a_{4n-2}+a_{4n-1}+a_{4n}\\ &\cdot\cdot\cdot\\ \end{aligned} b1=a1+a2+a3+a4b2=a5+a6+a7+a8bn=a4n3+a4n2+a4n1+a4n
于是我们能得到一个新的无穷级数
∑ n = 1 ∞ b n = b 1 + b 2 + b 3 + ⋅ ⋅ ⋅ + b k + ⋅ ⋅ ⋅ \sum_{n=1}^{\infty}b_n=b_1+b_2+b_3+\cdot\cdot\cdot+b_k+\cdot\cdot\cdot n=1bn=b1+b2+b3++bk+
区域级数与原级数的收敛发散关系为
区 域 级 数 发 散 ⇒ 原 级 数 发 散 但 区 域 级 数 发 散 ⇍ 原 级 数 发 散 区 域 级 数 收 敛 ⇐ 原 级 数 收 敛 但 区 域 级 数 收 敛 ⇏ 原 级 数 收 敛 \begin{aligned} &区域级数发散\textcolor{blue}{\Large\rArr}原级数发散\quad但\quad区域级数发散\textcolor{red}{\Large\nLeftarrow}原级数发散\\ &区域级数收敛\textcolor{blue}{\Large\lArr}原级数收敛\quad但\quad区域级数收敛\textcolor{red}{\Large\nRightarrow}原级数收敛 \end{aligned}

6). 一般项是否趋于零

设有一无穷级数 ∑ n = 1 ∞ a n \sum_{n=1}^\infty a_n n=1an,当 n → ∞ n\to \infty n时,且 ∑ n = 1 ∞ a n = s \sum_{n=1}^\infty a_n=s n=1an=s,则
级 数 s 收 敛 ⇒ 一 般 项 a n 趋 于 零 但 级 数 s 收 敛 ⇍ 一 般 项 a n 趋 于 零 级 数 s 发 散 ⇐ 一 般 项 a n 不 趋 于 零 但 级 数 s 发 散 ⇏ 一 般 项 a n 不 趋 于 零 \begin{aligned} &级数s收敛\textcolor{blue}{\Large\rArr}一般项a_n趋于零\qquad但\qquad级数s收敛\textcolor{red}{\Large\nLeftarrow}一般项a_n趋于零\\ &级数s发散\textcolor{blue}{\Large\lArr}一般项a_n不趋于零\quad但\qquad级数s发散\textcolor{red}{\Large\nRightarrow}一般项a_n不趋于零 \end{aligned} sansansansan

调和级数
∑ n = 1 ∞ 1 n = 1 + 1 2 + 1 3 + ⋅ ⋅ ⋅ + 1 n + ⋅ ⋅ ⋅ \sum_{n=1}^\infty\frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{n}+\cdot\cdot\cdot n=1n1=1+21+31++n1+
级数为发散的趋于 + ∞ +\infty +但可以看到 n → ∞ 时 一 般 项 1 n → 0 是 趋 于 零 的 n\to \infty 时 一般项\frac{1}{n}\to 0是趋于零的 nn10

2. 正项级数及其审敛法

正项级数 级 数 ∑ n = 1 ∞ a n 的 每 一 项 a n ≥ 0 ( n = 1 , 2 , ⋅ ⋅ ⋅ ) , 就 是 正 项 级 数 级数\displaystyle\sum_{n=1}^\infty a_n的每一项a_n\geq0(n=1,2,\cdot\cdot\cdot),就是正项级数 n=1anan0(n=1,2,)
基本定理:正项级数收敛的充分必要条件是他的部分和数列有界
判 断 一 个 级 数 的 收 敛 性 时 会 用 到 各 种 审 敛 法 \color{blue}判断一个级数的收敛性时会用到各种审敛法

1). 比较审敛法

顾名思义是通过两个级数的比较来确定级数收敛性的办法,一般是已知一个级数的收敛性,将另一未知级数与其比较来确定,未知级数的收敛性

  1. 第一种比较审敛法
    设 ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n 是 两 个 正 项 级 数 { ∑ n = 1 ∞ b n 收 敛 ⇒ ∑ n = 1 ∞ a n 收 敛 , 条 件 : 自 某 项 起 a n ≤ b n ∑ n = 1 ∞ b n 发 散 ⇒ ∑ n = 1 ∞ a n 发 散 , 条 件 : 自 某 项 起 a n ≥ b n \boxed{ \begin{aligned} &设\sum_{n=1}^\infty a_n与\sum_{n=1}^\infty b_n是两个正项级数\\ &\begin{cases} \displaystyle\sum_{n=1}^\infty b_n收敛\textcolor{blue}{\Large\rArr}\sum_{n=1}^\infty a_n收敛,条件:自某项起a_n\leq b_n\\ \displaystyle\sum_{n=1}^\infty b_n发散\textcolor{blue}{\Large\rArr}\sum_{n=1}^\infty a_n发散,条件:自某项起a_n\geq b_n\\ \end{cases} \end{aligned} } n=1ann=1bnn=1bnn=1ananbnn=1bnn=1ananbn
  2. 第二种比较审敛法,又名比阶审敛法
    同 样 设 ∑ n = 1 ∞ a n 与 ∑ n = 1 ∞ b n 是 两 个 正 项 级 数 { ∑ n = 1 ∞ b n 收 敛 ⇒ ∑ n = 1 ∞ a n 收 敛 , 条 件 : a n 是 b n 的 同 阶 或 高 阶 的 无 穷 小 ∑ n = 1 ∞ b n 发 散 ⇒ ∑ n = 1 ∞ a n 发 散 , 条 件 : a n 是 b n 的 同 阶 或 低 阶 的 无 穷 小 ∑ n = 1 ∞ a n 的 收 敛 性 ⇔ ∑ n = 1 ∞ b n 的 收 敛 性 , 两 者 有 相 同 的 收 敛 性 , 条 件 : a n 与 b n 为 等 价 无 穷 小 时 \begin{aligned} &同样设\sum_{n=1}^\infty a_n与\sum_{n=1}^\infty b_n是两个正项级数\\ &\begin{cases} \displaystyle\sum_{n=1}^\infty b_n收敛\textcolor{blue}{\Large\rArr}\sum_{n=1}^\infty a_n收敛,条件:a_n是b_n的\color{blue}同阶或高阶\color{n}的无穷小\\ \displaystyle\sum_{n=1}^\infty b_n发散\textcolor{blue}{\Large\rArr}\sum_{n=1}^\infty a_n发散,条件:a_n是b_n的\color{red}同阶或低阶\color{n}的无穷小\\ \displaystyle \sum_{n=1}^\infty a_n的收敛性\textcolor{blue}{\Large\Leftrightarrow} \displaystyle\sum_{n=1}^\infty b_n的收敛性,两者有相同的收敛性,条件: a_n与b_n为\color{green}等价无穷小时 \end{cases} \end{aligned} n=1ann=1bnn=1bnn=1ananbnn=1bnn=1ananbnn=1ann=1bn:anbn

2). 比值审敛法

设 ∑ n = 1 ∞ a n 是 正 项 级 数 , 如 果 极 限 lim ⁡ n → ∞ a n + 1 a n = ρ 有 确 定 意 义 , 则 级 数 的 收 敛 性 = { ρ < 1 , 收 敛 1 < ρ ≤ + ∞ , 发 散 ρ = 1 , 收 敛 发 散 都 有 可 能 , 需 根 据 具 体 情 况 分 析 \boxed{ \begin{aligned} &设\sum_{n=1}^\infty a_n是正项级数,如果极限\underset{n\to \infty}{\lim}\frac{a_{n+1}}{a_n}=\rho 有确定意义,则\\ &级数的收敛性= \begin{cases} \rho<1,&收敛\\ 1<\rho\leq +\infty, &发散\\ \rho=1,&收敛发散都有可能,需根据具体情况分析 \end{cases} \end{aligned} } n=1annlimanan+1=ρ=ρ<1,1<ρ+,ρ=1,

3). 根植审敛法

设 ∑ n = 1 ∞ a n 是 正 项 级 数 , 如 果 极 限 lim ⁡ n → ∞ a n n = ρ 有 确 定 意 义 , 则 级 数 的 收 敛 性 = { ρ < 1 , 收 敛 1 < ρ ≤ + ∞ , 发 散 ρ = 1 , 收 敛 发 散 都 有 可 能 , 需 根 据 具 体 情 况 分 析 \boxed{ \begin{aligned} &设\sum_{n=1}^\infty a_n是正项级数,如果极限\underset{n\to \infty}{\lim}\sqrt[n]{a_n}=\rho 有确定意义,则\\ &级数的收敛性= \begin{cases} \rho<1,&收敛\\ 1<\rho\leq +\infty, &发散\\ \rho=1,&收敛发散都有可能,需根据具体情况分析 \end{cases} \end{aligned} } n=1annlimnan =ρ=ρ<1,1<ρ+,ρ=1,

4). 柯西积分审敛法

对 于 正 项 级 数 ∑ n = 1 ∞ a n , 如 果 有 区 间 [ 1 , + ∞ ) 上 的 连 续 单 调 减 少 函 数 f ( x ) 适 合 f ( n ) = a n ( n = 1 , 2 , . . . ) , 则 级 数 ∑ n = 1 ∞ a n 与 反 常 积 分 ∫ 1 + ∞ f ( x ) d x 同 时 收 敛 同 时 发 散 \boxed{ \begin{aligned} &对于正项级数\displaystyle\sum_{n=1}^\infty a_n,如果有区间[1,+\infty)上的连续单调减少函数f(x)适合\\ &\qquad\qquad\qquad\qquad\qquad\qquad f(n)=a_n(n=1,2,...),\\ &则级数\displaystyle\sum_{n=1}^\infty a_n与反常积分\int_1^{+\infty}f(x)dx\color{red}同时收敛同时发散 \end{aligned} } n=1an,[1,+)f(x)f(n)=an(n=1,2,...),n=1an1+f(x)dx
该审敛法的证明思路如下
由 于 f ( x ) 在 [ 1 , + ∞ ) 上 单 调 递 减 , 所 以 f ( n ) = a n 便 是 区 间 [ n − 1 , n ] 中 最 小 的 值 , 于 是 ∫ n − 1 n a n d x ≤ ∫ n − 1 n f ( x ) d x    ⟹    a n ≤ ∫ n − 1 n f ( x ) d x    ⟹    ∑ n = 2 + ∞ a n ≤ ∑ n = 2 + ∞ ∫ n − 1 n f ( x ) d x    ⟹    ∑ n = 2 + ∞ a n ≤ ∫ 1 + ∞ f ( x ) d x 这 也 是 将 级 数 这 类 离 散 型 数 学 结 构 与 连 续 型 数 学 结 构 联 系 起 来 的 通 常 办 法 \boxed{ \begin{aligned} &由于f(x)在[1,+\infty)上单调递减,所以f(n)=a_n便是区间[n-1,n]中最小的值,于是\\ &\int_{n-1}^na_ndx\leq\int_{n-1}^nf(x)dx\implies a_n\leq \int_{n-1}^nf(x)dx\implies\displaystyle\sum_{n=2}^{+\infty} a_n\leq \displaystyle\sum_{n=2}^{+\infty} \int_{n-1}^nf(x)dx\implies\displaystyle\sum_{n=2}^{+\infty} a_n\leq \int_{1}^{+\infty}f(x)dx\\ &这也是将级数这类离散型数学结构与连续型数学结构联系起来的通常办法 \end{aligned} } f(x)[1,+)f(n)=an便[n1,n]n1nandxn1nf(x)dxann1nf(x)dxn=2+ann=2+n1nf(x)dxn=2+an1+f(x)dx

3. 绝对收敛与条件收敛

1). 交错级数及审敛法

交 错 级 数 : 各 项 正 负 交 错 的 级 数 称 为 交 错 级 数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n = a 1 − a 2 + a 3 − a 4 + ⋅ ⋅ ⋅ + ( − 1 ) n − 1 a n + ⋅ ⋅ ⋅ ∑ n = 1 ∞ ( − 1 ) n a n = − a 1 + a 2 − a 3 + a 4 − ⋅ ⋅ ⋅ + ( − 1 ) n a n + ⋅ ⋅ ⋅ 上 面 两 个 式 子 都 是 交 错 级 数 的 基 本 形 式 , 根 据 级 数 的 基 本 性 质 , 两 者 的 收 敛 性 是 一 致 的 \boxed{ \begin{aligned} &\textcolor{blue}{交错级数}:各项正负交错的级数称为交错级数\\ &\displaystyle\sum_{n=1}^\infty(-1)^{n-1}a_n=a_1-a_2+a_3-a_4+\cdot\cdot\cdot+(-1)^{n-1}a_n+\cdot\cdot\cdot\\ &\displaystyle\sum_{n=1}^\infty(-1)^{n}a_n=-a_1+a_2-a_3+a_4-\cdot\cdot\cdot+(-1)^{n}a_n+\cdot\cdot\cdot\\ &上面两个式子都是交错级数的基本形式,根据级数的基本性质,两者的收敛性是一致的 \end{aligned} } n=1(1)n1an=a1a2+a3a4++(1)n1an+n=1(1)nan=a1+a2a3+a4+(1)nan+,
交 错 级 数 审 敛 法 : 如 果 交 错 级 数 ∑ n = 1 ∞ ( − 1 ) n − 1 a n ( a n > 0 ) 满 足 两 个 条 件 { a n + 1 ≤ a n ( n = 1 , 2 , 3 , . . . ) lim ⁡ n → ∞ a n = 0    ⟹    那 么 { 级 数 收 敛 , 它 的 和 s 满 足 0 ≤ s ≤ a 1 级 数 的 余 项 r n 的 绝 对 值 ∣ r n ∣ ≤ a n + 1 \boxed{ \begin{aligned} &\textcolor{blue}{交错级数审敛法}:如果交错级数\\ &\sum_{n=1}^{\infty}(-1)^{n-1}a_n\quad (a_n>0)\\ &满足两个条件 \begin{cases} a_{n+1} \leq a_n\quad(n=1,2,3,...)\\ \underset{n\to\infty}{\lim}a_n=0 \end{cases}\overset{那么}{\implies} &\begin{cases} 级数收敛,它的和s满足0\leq s\leq a_1\\ 级数的余项r_n的绝对值|r_n|\leq a_{n+1} \end{cases} \end{aligned} } n=1(1)n1an(an>0){an+1an(n=1,2,3,...)nliman=0{s0sa1rnrnan+1
在这里插入图片描述
f i g 1 交 错 调 和 级 数 的 一 般 项 以 及 部 分 和 的 分 布 fig1 交错调和级数的一般项以及部分和的分布 fig1
以交错调和级数 ∑ n = 1 ∞ ( − 1 ) n − 1 n \displaystyle\sum_{n=1}^\infty\frac{(-1)^{n-1}}{n} n=1n(1)n1为例 f i g 1 fig1 fig1

  1. 下层 红 ○ \textcolor{red}{红○} 为一般项的分布,很明显由于一般项的值处于正负交替出现的状态,所以他们在 y = 0 y=0 y=0轴的上下交替出现,并最终趋于 0 0 0
  2. 上层 蓝 × \textcolor{blue}{蓝×} ×为部分和的分布,部分和始终为正但是也是在一定范围内上下交替出现,很显然 ∣ S n + 1 − S n ∣ = a n |S_{n+1}-S_n|=a_n Sn+1Sn=an,每两个部分和之间的差值,便是一个一般项的绝对值,而一般项的绝对值是在不断减小的,所以每两个部分和间差距会越来越小,最终必然会趋于一点

2). 级数的绝对收敛与条件收敛

绝 对 收 敛 = { 绝 对 值 项 级 数 ∑ n = 1 ∞ ∣ a n ∣ 收 敛 并 且 原 级 数 ∑ n = 1 ∞ a n 收 敛 条 件 收 敛 = { 绝 对 值 项 级 数 ∑ n = 1 ∞ ∣ a n ∣ 发 散 但 原 级 数 ∑ n = 1 ∞ a n 收 敛 \boxed{ \begin{aligned} 绝对收敛= \begin{cases} 绝对值项级数 &\displaystyle\sum_{n=1}^{\infty}|a_n|&收敛\\ 并且原级数 &\displaystyle\sum_{n=1}^{\infty}a_n&收敛 \end{cases}\\ 条件收敛= \begin{cases} 绝对值项级数 &\displaystyle\sum_{n=1}^{\infty}|a_n|&发散\\ 但原级数 &\displaystyle\sum_{n=1}^{\infty}a_n&收敛 \end{cases}\\ \end{aligned} } =n=1ann=1an=n=1ann=1an
绝对收敛的级数必然收敛,但收敛的级数未必绝对收敛
一般来说,如果级数 ∑ n = 1 ∞ ∣ a n ∣ \displaystyle\sum_{n=1}^{\infty}|a_n| n=1an发散,并不能断定原级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{\infty}a_n n=1an发散,然而如果用正项级数比值审敛法根值审敛法判定 ∑ n = 1 ∞ ∣ a n ∣ \displaystyle\sum_{n=1}^{\infty}|a_n| n=1an发散,则可断定原级数 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^{\infty}a_n n=1an也一定发散
绝 对 值 级 数 = { 收 敛    ⟹    原 级 数 收 敛 发 散 { 比 值 审 敛 法 或 根 值 审 敛 法 判 定    ⟹    原 级 数 发 散 使 用 其 他 方 法 判 定    ⟹    原 级 数 收 敛 性 不 定 \boxed{ \begin{aligned} 绝对值级数= \begin{cases} 收敛\implies原级数收敛\\ 发散\begin{cases} 比值审敛法或根值审敛法判定&\implies 原级数发散\\ 使用其他方法判定&\implies原级数收敛性不定 \end{cases} \end{cases} \end{aligned} } ={使
性质1. 绝对收敛级数的更序级数仍然绝对收敛,且其和不变
性质2. 如果 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^\infty a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^\infty b_n n=1bn都绝对收敛,他们的和分别是 s 和 σ s和\sigma sσ,那么其柯西乘积也是绝对收敛的,且其和为 s ⋅ σ s\cdot\sigma sσ

柯西乘积:将 ∑ n = 1 ∞ a n \displaystyle\sum_{n=1}^\infty a_n n=1an ∑ n = 1 ∞ b n \displaystyle\sum_{n=1}^\infty b_n n=1bn中的一般项依次排列成两个列向量 a ⃗ 与 b ⃗ \vec{a}与\vec{b} a b ,而通过一个外积扩展会得到一个矩阵 A A A,将矩阵中的元素按照某一顺序排列并相加便是柯西乘积,很明显柯西乘积也是一个级数
A = b ⃗ ⋅ a ⃗ T A=\vec{b}\cdot\vec{a}^T A=b a T计算如下
[ b 1 b 2 b 3 ⋮ b j ⋮ ] ⋅ [ a 1 a 2 a 3 ⋯ a i ⋯ ] = [ a 1 b 1 a 2 b 1 a 3 b 1 ⋯ a i b 1 ⋯ a 1 b 2 a 2 b 2 a 3 b 2 ⋯ a i b 2 ⋯ a 1 b 3 a 2 b 3 a 3 b 3 ⋯ a i b 3 ⋯ ⋮ ⋮ ⋮ ⋮ a 1 b j a 2 b j a 3 b j ⋅ ⋅ ⋅ a i b j ⋅ ⋅ ⋅ ⋮ ⋮ ⋮ ⋮ ] \begin{bmatrix} b1\\b2\\b3\\ \vdots \\ b_j\\ \vdots \end{bmatrix} {\LARGE\cdot} \begin{bmatrix} a1&a2&a3& \cdots & a_i& \cdots \end{bmatrix}= \begin{bmatrix} a_1b_1&a_2b_1&a_3b_1&\cdots &a_ib_1&\cdots\\ a_1b_2&a_2b_2&a_3b_2&\cdots &a_ib_2&\cdots\\ a_1b_3&a_2b_3&a_3b_3&\cdots &a_ib_3&\cdots\\ \vdots&\vdots&\vdots&\quad&\vdots\\ a_1b_j&a_2b_j&a_3b_j&\cdot\cdot\cdot &a_ib_j&\cdot\cdot\cdot\\ \vdots&\vdots&\vdots&\quad&\vdots\\ \end{bmatrix} b1b2b3bj[a1a2a3ai]=a1b1a1b2a1b3a1bja2b1a2b2a2b3a2bja3b1a3b2a3b3a3bjaib1aib2aib3aibj
对矩阵 A A A内元素的排序一般有对角线法和正方形法,但无论那种排序方法,所构成的乘积级数都是绝对收敛的,并且其和都是所给两个级数之和的积 s ⋅ σ s\cdot\sigma sσ

4. 幂级数

1). 幂级数及其收敛性

幂级数是一种比较常用的函数项无穷级数,形如
∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + ⋯ + a n ( x − x 0 ) n + ⋯ \sum_{n=0}^\infty a_n(x-x_0)^n=a_0+a_1(x-x_0)+a_2(x-x_0)^2+\cdots+a_n(x-x_0)^n+\cdots n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2++an(xx0)n+
如 果 幂 级 数 ∑ n = 0 ∞ a n ( x − x 0 ) n 的 收 敛 半 径 为 R , 则 它 的 收 敛 域 当 R = 0 时 是 x 0 , 当 R = + ∞ 时 是 ( − ∞ , + ∞ ) , 当 0 < R < + ∞ 时 是 以 x 0 为 中 心 , 以 R 为 半 径 的 区 间 ( 或 开 或 闭 或 半 开 半 闭 ) , 并 在 收 敛 域 的 内 点 处 幂 级 数 ∑ n = 0 ∞ a n ( x − x 0 ) n 绝 对 收 敛 \boxed{ \begin{aligned} &如果幂级数\sum_{n=0}^\infty a_n(x-x_0)^n的收敛半径为R,则它的收敛域当R=0时是{x_0},\\ &当R=+\infty时是(-\infty,+\infty),当0<R<+\infty时是以x_0为中心,以R为半径的区间(或开或闭或半开半闭),\\ &并在收敛域的内点处幂级数\sum_{n=0}^\infty a_n(x-x_0)^n绝对收敛 \end{aligned} } n=0an(xx0)nRR=0x0R=+(,+)0<R<+x0R()n=0an(xx0)n

2). 收敛半径求法

基于比值审敛法和根值审敛法,收敛半径求法有两种,系数模比值法系数模根植法
首 先 要 求 出 一 个 临 时 变 量 ρ = { lim ⁡ n → ∞ ∣ a n + 1 ∣ ∣ a n ∣ 系 数 模 比 值 法 lim ⁡ n → ∞ ∣ a n ∣ n 系 数 模 根 植 法 ⇒ 利 用 ρ 求 取 收 敛 半 径 R 的 方 法 是 一 致 的 { R = 1 ρ 当 0 < ρ < + ∞ R = + ∞ 当 ρ = 0 R = 0 当 ρ = + ∞ 关 于 两 个 端 点 处 ± R 的 收 敛 性 , 需 要 将 x = ± R 代 入 幂 级 数 中 进 行 验 证 判 断 , 即 确 定 收 敛 区 间 是 [ − R , R ] 还 是 ( − R , R ) 或 ( − R , R ] 或 [ − R , R ) \boxed{ \begin{aligned} &首先要求出一个临时变量 \rho= \begin{cases} \underset{n\to\infty}{\lim}\frac{|a_{n+1}|}{|a_n|} &系数模比值法\\ \underset{n\to\infty}{\lim}\sqrt[n]{|a_n|}&系数模根植法 \end{cases}\xRightarrow{利用\rho求取收敛半径R的方法是一致的} \begin{cases} R=\frac{1}{\rho} & 当0<\rho<+\infty\\ R=+\infty & 当\rho=0\\ R=0 & 当\rho=+\infty \end{cases}\\ &\color{red}关于两个端点处\plusmn R的收敛性,需要将x=\plusmn R代入幂级数中进行验证判断,即确定收敛区间是[-R,R]还是(-R,R)或(-R,R]或[-R,R) \end{aligned} } ρ=nlimanan+1nlimnan ρR R=ρ1R=+R=00<ρ<+ρ=0ρ=+±Rx=±R,[R,R](R,R)(R,R][R,R)

3). 幂级数的运算与性质

幂级数运算
设幂级数 ∑ n = 0 ∞ a n x n \displaystyle\sum_{n=0}^\infty a_nx^n n=0anxn ∑ n = 0 ∞ b n x n \displaystyle\sum_{n=0}^\infty b_nx^n n=0bnxn分别在区间 ( − R 1 , R 1 ) (-R_1,R_1) (R1,R1) ( − R 2 , R 2 ) (-R_2,R_2) (R2,R2)内收敛,那么可以对其进行四则运算
{ 加 减 法 ∑ n = 0 ∞ a n x n ± ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ ( a n ± b n ) x n x ∈ ( − R 1 , R 1 ) ∩ ( − R 2 , R 2 ) 乘 法 ( 柯 西 乘 积 ) ∑ n = 0 ∞ a n x n ⋅ ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ ( ∑ i + j = n a i b j ) x n x ∈ ( − R 1 , R 1 ) ∩ ( − R 2 , R 2 ) 除 法 ∑ n = 0 ∞ a n x n ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ c n x n ∑ n = 0 ∞ c n x n 的 收 敛 区 间 可 能 要 比 x ∈ ( − R 1 , R 1 ) ∩ ( − R 2 , R 2 ) 小 得 多 \begin{cases} 加减法 &\displaystyle\sum_{n=0}^\infty a_nx^n\plusmn \displaystyle\sum_{n=0}^\infty b_nx^n = \displaystyle\sum_{n=0}^\infty (a_n \plusmn b_n)x^n &x\in (-R_1,R_1)\cap(-R_2,R_2)\\ 乘法(柯西乘积) &\displaystyle\sum_{n=0}^\infty a_nx^n\cdot \displaystyle\sum_{n=0}^\infty b_nx^n=\displaystyle\sum_{n=0}^\infty(\displaystyle\sum_{i+j=n}a_ib_j)x^n &x\in (-R_1,R_1)\cap(-R_2,R_2)\\ 除法&\frac{\displaystyle\sum_{n=0}^\infty a_nx^n}{\displaystyle\sum_{n=0}^\infty b_nx^n}=\displaystyle\sum_{n=0}^\infty c_nx^n &\displaystyle\sum_{n=0}^\infty c_nx^n的收敛区间可能要比x\in (-R_1,R_1)\cap(-R_2,R_2)小得多 \end{cases} (西)n=0anxn±n=0bnxn=n=0(an±bn)xnn=0anxnn=0bnxn=n=0(i+j=naibj)xnn=0bnxnn=0anxn=n=0cnxnx(R1,R1)(R2,R2)x(R1,R1)(R2,R2)n=0cnxnx(R1,R1)(R2,R2)
除 法 比 较 特 殊 需 要 借 助 乘 法 进 行 逐 系 数 计 算 ∑ n = 0 ∞ a n x n ∑ n = 0 ∞ b n x n = ∑ n = 0 ∞ c n x n    ⟹    ∑ n = 0 ∞ a n x n = ∑ n = 0 ∞ b n x n ⋅ ∑ n = 0 ∞ c n x n ⇓ a 0 = b 0 c 0 , a 1 = b 1 c 0 + b 0 c 1 , a 2 = b 2 c 0 + b 1 c 1 + b 0 c 2 , ⋯ ⋯ 除法比较特殊需要借助乘法进行逐系数计算\\ \boxed{ \begin{aligned} \frac{\displaystyle\sum_{n=0}^\infty a_nx^n}{\displaystyle\sum_{n=0}^\infty b_nx^n}=\displaystyle\sum_{n=0}^\infty c_nx^n \implies& \displaystyle\sum_{n=0}^\infty a_nx^n=\displaystyle\sum_{n=0}^\infty b_nx^n \cdot \displaystyle\sum_{n=0}^\infty c_nx^n\\ &\LARGE\Downarrow\\ a_0&=b_0c_0,\\ a_1&=b_1c_0+b_0c_1,\\ a_2&=b_2c_0+b_1c_1+b_0c_2,\\ &\cdots\cdots \end{aligned} } n=0bnxnn=0anxn=n=0cnxna0a1a2n=0anxn=n=0bnxnn=0cnxn=b0c0,=b1c0+b0c1,=b2c0+b1c1+b0c2,
幂级数和函数的性质
和 函 数 的 性 质 = { 连 续 型 幂 级 数 ∑ n = 0 ∞ a n x n 的 和 函 数 s ( x ) 在 其 收 敛 域 K 上 连 续 可 积 性 幂 级 数 ∑ n = 0 ∞ a n x n 的 和 函 数 s ( x ) 在 其 收 敛 域 K 的 任 一 有 界 闭 子 区 间 上 可 积 , 并 且 逐 项 积 分 后 所 得 级 数 与 原 级 数 有 相 同 的 收 敛 半 径 可 微 性 幂 级 数 ∑ n = 0 ∞ a n x n 的 和 函 数 s ( x ) 在 其 收 敛 域 K 内 可 导 , 并 且 逐 求 导 分 后 所 得 级 数 与 原 级 数 有 相 同 的 收 敛 半 径 和 函 数 积 分 和 求 导 公 式 = { 积 分 ∫ 0 x s ( x ) d x = ∫ 0 x [ ∑ n = 0 ∞ a n x n ] d x = ∑ n = 0 ∞ ∫ 0 x a n x n d x = ∑ n = 0 ∞ a n n + 1 x n + 1 x ∈ K 求 导 s ′ ( x ) = ( ∑ n = 0 ∞ a n x n ) ′ = ∑ n = 0 ∞ ( a n x n ) ′ = ∑ n = 1 ∞ n a n x n − 1 x ∈ K \boxed{ \begin{aligned} 和函数的性质&= \begin{cases} 连续型&幂级数\sum_{n=0}^\infty a_nx^n的和函数s(x)在其收敛域K上连续\\ 可积性&幂级数\sum_{n=0}^\infty a_nx^n的和函数s(x)在其收敛域K的任一有界闭子区间上可积,并且逐项积分后所得级数与原级数有相同的收敛半径\\ 可微性&幂级数\sum_{n=0}^\infty a_nx^n的和函数s(x)在其收敛域K内可导,并且逐求导分后所得级数与原级数有相同的收敛半径\\ \end{cases}\\ 和函数积分和求导公式&= \begin{cases} 积分 & \int_0^xs(x)dx=\int_0^x[\displaystyle\sum_{n=0}^\infty a_nx^n]dx=\displaystyle\sum_{n=0}^\infty\int_0^xa_nx^ndx=\displaystyle\sum_{n=0}^\infty\frac{a_n}{n+1}x^{n+1} &x\in K\\ 求导 &s^{'}(x)=(\displaystyle\sum_{n=0}^\infty a_nx^n)^{'}=\displaystyle\sum_{n=0}^\infty(a_nx^n)^{'}=\displaystyle\sum_{n=1}^\infty na_nx^{n-1} &x\in K\\ \end{cases} \end{aligned} } =n=0anxns(x)Kn=0anxns(x)Kn=0anxns(x)K=0xs(x)dx=0x[n=0anxn]dx=n=00xanxndx=n=0n+1anxn+1s(x)=(n=0anxn)=n=0(anxn)=n=1nanxn1xKxK

5. 函数的泰勒级数

1). 泰勒级数的概念

已经知道一个函数 f ( x ) f(x) f(x)如果在 x 0 x_0 x0的邻域 U ( x 0 , r ) U(x_0,r) U(x0,r)内具有 n + 1 n+1 n+1阶的导数,那么该邻域内 f ( x ) f(x) f(x)有泰勒公式
f ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + R n ( x ) 其 中 P n ( x ) = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + . . . + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n 为 泰 勒 多 项 式 R n ( x ) = f ( n + 1 ) ( ξ ) ( n + 1 ) ! ( x − x 0 ) n + 1 为 拉 格 朗 日 余 项 , 也 可 以 看 做 是 拟 合 误 差 f ( x ) − P n ( x ) = R n ( x ) \boxed{ \begin{aligned} &f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+...+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n + R_n(x)\\ &其中\\ &P_n(x)=f(x_0)+f^{'}(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+...+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n 为泰勒多项式\\ &R_n(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{n+1} 为拉格朗日余项,也可以看做是拟合误差\\ &f(x)-P_n(x)=R_n(x) \end{aligned} } f(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2+...+n!1f(n)(x0)(xx0)n+Rn(x)Pn(x)=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2+...+n!1f(n)(x0)(xx0)nRn(x)=(n+1)!f(n+1)(ξ)(xx0)n+1f(x)Pn(x)=Rn(x)
如 果 f ( x ) 在 邻 域 内 具 有 各 阶 导 数 , 即 n → ∞ , 那 么 P n ( x ) 其 实 就 变 成 了 一 个 幂 级 数 P ∞ ( x ) = ∑ n = 0 ∞ f ( n ) ( x 0 ) n ! ( x − x 0 ) n = f ( x 0 ) + f ′ ( x 0 ) ( x − x 0 ) + 1 2 ! f ′ ′ ( x 0 ) ( x − x 0 ) 2 + ⋯ + 1 n ! f ( n ) ( x 0 ) ( x − x 0 ) n + ⋯ 称 为 f ( x ) 在 x = x 0 处 的 泰 勒 级 数 , 而 且 已 证 明 一 个 重 要 的 事 实 : 如 果 一 个 函 数 f ( x ) 可 以 展 开 成 幂 级 数 , 那 一 定 是 泰 勒 级 数 , 而 幂 级 数 的 和 函 数 的 收 敛 结 果 也 一 定 是 f ( x ) 随 之 而 来 的 如 果 泰 勒 级 数 P ∞ ( x ) 可 以 表 示 f ( x ) , 即 f ( x ) = P ∞ ( x ) , 那 么 R ∞ ( x ) = f ( x ) − P ∞ ( x ) 必 然 为 零 , 即 lim ⁡ n → ∞ R n ( x ) = 0 ( x ∈ U ( x 0 , r ) ) \begin{aligned} &如果f(x)在邻域内具有各阶导数,即n\to\infty,那么P_n(x)其实就变成了一个幂级数\\ &P_{\infty}(x)=\sum_{n=0}^\infty\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n=f(x_0)+f^{'}(x_0)(x-x_0)+\frac{1}{2!}f^{''}(x_0)(x-x_0)^2+\cdots+\frac{1}{n!}f^{(n)}(x_0)(x-x_0)^n+\cdots\\ &称为f(x)在x=x_0处的\textcolor{blue}{泰勒级数},\\ &而且已证明一个重要的事实:\color{red}如果一个函数f(x)可以展开成幂级数,那一定是泰勒级数,而幂级数的和函数的收敛结果也一定是f(x)\\ &随之而来的如果泰勒级数P_\infty(x)可以表示f(x),即f(x)=P_\infty(x),那么R_\infty(x)=f(x)-P_\infty(x)必然为零,\\ &即\underset{n\to\infty}{\lim}R_n(x)=0 \quad(x\in U(x_0,r)) \end{aligned} f(x)nPn(x)P(x)=n=0n!f(n)(x0)(xx0)n=f(x0)+f(x0)(xx0)+2!1f(x0)(xx0)2++n!1f(n)(x0)(xx0)n+f(x)x=x0f(x)f(x)P(x)f(x)f(x)=P(x)R(x)=f(x)P(x)nlimRn(x)=0(xU(x0,r))
综上所述总结一下
设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一邻域 U ( x 0 , r ) U(x_0,r) U(x0,r)内具有各阶导数,则 f ( x ) f(x) f(x)在该邻域内可展开成泰勒级数的充分必要条件是 f ( x ) f(x) f(x)的泰勒公式中的余项 R n ( x ) R_n(x) Rn(x)满足
lim ⁡ n → ∞ R n ( x ) = 0 ( x ∈ U ( x 0 , r ) ) \underset{n\to \infty}{\lim}R_n(x)=0\qquad(x\in U(x_0,r))\\ nlimRn(x)=0(xU(x0,r))

2). 函数展开成幂级数的方法

直接展开法
该办法一般是用来求取函数 f ( x ) f(x) f(x)展开成 x x x的幂级数,也就是麦克劳林级数
当 函 数 f ( x ) 展 开 成 ( x − x 0 ) 的 幂 级 数 后 , 取 x 0 = 0 则 , 原 泰 勒 级 数 展 开 式 会 变 为 ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + 1 n ! f ( n ) ( 0 ) x n + ⋯ 这 个 关 于 x 的 幂 级 数 便 是 麦 克 劳 林 级 数 \boxed{ \begin{aligned} &当函数f(x)展开成(x-x_0)的幂级数后,取x_0=0则,原泰勒级数展开式会变为\\ &\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n=f(0)+f^{'}(0)x+\frac{1}{2!}f^{''}(0)x^2+\cdots+\frac{1}{n!}f^{(n)}(0)x^n+\cdots\\ &这个关于x的幂级数便是\color{blue}麦克劳林级数 \end{aligned} } f(x)(xx0)x0=0n=0n!f(n)(0)xn=f(0)+f(0)x+2!1f(0)x2++n!1f(n)(0)xn+x便
关于直接展开法步骤的简单说明
{ 首 先 检 查 函 数 f ( x ) 在 x = 0 处 是 否 存 在 各 阶 导 数 , 如 果 存 在 才 可 继 续 步 骤 一 求 出 各 阶 导 数 在 x = 0 处 的 值 f ( 0 ) 、 f ′ ( 0 ) 、 f ′ ′ ( 0 ) 、 ⋯ f ( n ) ( 0 ) ⋯ 步 骤 二 做 出 幂 级 数 形 式 ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n = f ( 0 ) + f ′ ( 0 ) x + 1 2 ! f ′ ′ ( 0 ) x 2 + ⋯ + 1 n ! f ( n ) ( 0 ) x n + ⋯ 步 骤 三 求 出 幂 级 数 收 敛 区 间 ( − R , R ) , 并 在 收 敛 区 间 内 考 察 拉 格 朗 日 余 项 极 限 lim ⁡ n → 0 R n ( x ) = lim ⁡ n → 0 f ( n + 1 ) ( ξ ) ( n + 1 ) ! x n + 1 是 否 为 零 , 如 果 为 零 则 由 定 理 可 得 f ( x ) = ∑ n = 0 ∞ f ( n ) ( 0 ) n ! x n , x ∈ ( − R , R ) 步 骤 四 考 察 幂 级 数 两 个 端 点 处 ± R 的 收 敛 性 以 及 原 函 数 在 两 点 上 的 连 续 型 , 并 最 终 确 定 幂 级 数 的 收 敛 域 ( − R , R ) 或 ( − R , R ] 或 [ − R , R ) 或 [ − R , R ] \boxed{ \begin{cases} &首先检查函数f(x)在x=0处是否存在各阶导数,如果存在才可继续\\ &步骤一\quad求出各阶导数在x=0处的值 f(0)、f^{'}(0)、f^{''}(0)、\cdots f^(n)(0)\cdots\\ &步骤二\quad做出幂级数形式\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n=f(0)+f^{'}(0)x+\frac{1}{2!}f^{''}(0)x^2+\cdots+\frac{1}{n!}f^{(n)}(0)x^n+\cdots\\ &步骤三\quad求出幂级数收敛区间(-R,R),并在收敛区间内考察拉格朗日余项极限\underset{n\to 0}{\lim}R_n(x)=\underset{n\to 0}{\lim}\frac{f^{(n+1)}(\xi)}{(n+1)!}x^{n+1}是否为零,如果为零则由定理可得f(x)=\sum_{n=0}^\infty\frac{f^{(n)}(0)}{n!}x^n,x\in(-R,R)\\ &步骤四\quad考察幂级数两个端点处\plusmn R的收敛性以及原函数在两点上的连续型,并最终确定幂级数的收敛域(-R,R)或(-R,R]或[-R,R)或[-R,R] \end{cases} } f(x)x=0x=0f(0)f(0)f(0)f(n)(0)n=0n!f(n)(0)xn=f(0)+f(0)x+2!1f(0)x2++n!1f(n)(0)xn+(R,R)n0limRn(x)=n0lim(n+1)!f(n+1)(ξ)xn+1f(x)=n=0n!f(n)(0)xn,x(R,R)±R(R,R)(R,R][R,R)[R,R]

间接展开法
简单来说间接展开法就是利用一些已经证实的幂级数展开式,通过幂级数的运算如四则运算,逐项求导,逐项积分以及变量代换将函数展开成幂级数,而其最重要的功能是用来方便求取函数 f ( x ) f(x) f(x)关于 ( x − x 0 ) (x-x_0) (xx0)的幂级数展开。
比如在已知 l n ( 2 + x ) = l n 2 + ∑ n = 1 ∞ ( − 1 ) n + 1 n ∗ 2 n x n x ∈ ( − 2 , 2 ] ln(2+x)=ln2+\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n*2^n}x^n\quad x\in (-2,2] ln(2+x)=ln2+n=1n2n(1)n+1xnx(2,2],这个函数是关于 x x x的幂级数展开,那么如果要求 l n x 关 于 ( x − 2 ) lnx关于(x-2) lnx(x2)的幂级数展开式呢。
很明显 l n x = l n ( 2 + x − 2 ) lnx=ln(2+x-2) lnx=ln(2+x2),于是设 u = x − 2 u=x-2 u=x2,便可套用 l n ( 2 + x ) ln(2+x) ln(2+x)的幂级数展开式,
l n x = l n ( 2 + u ) = l n 2 + ∑ n = 1 ∞ ( − 1 ) n + 1 n ∗ 2 n ( x − 2 ) n x ∈ ( 0 , 4 ] lnx=ln(2+u)=ln2+\displaystyle\sum_{n=1}^\infty\frac{(-1)^{n+1}}{n*2^n}(x-2)^n\quad x\in (0,4] lnx=ln(2+u)=ln2+n=1n2n(1)n+1(x2)nx(0,4]

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值