RNN(一)——循环神经网络的实现

一、循环神经网络RNN

1.RNN是什么

循环神经网络RNN主要体现在上下文对理解的重要性,他比传统的神经网络(传统的神经网络结构:输入层-隐藏层-输出层)更细腻温情,前面所有的输入产生的结果都对后续输出产生影响,他关注隐层每个神经元在时间维度上的成长。体现在图上,就是表示隐层在不同时刻的状态。RNN在小数据集,低算力的情况下非常有效。

在这里插入图片描述
在这里插入图片描述

2.RNN的语言模型

在这里插入图片描述

3.RNN的结构形式

由于时序上的层级就够,使得RNN在输入输出关系上有很大的灵活性。以下是四种结构形式:

  1. 单入多出的形式:可实现看图说话等功能。
    在这里插入图片描述
  2. N to one:与上面一种刚好相反,输入很多句话,可以输出一张图片。

在这里插入图片描述

  1. N to N:输入输出等长序列。可生成文章、诗歌、代码等。

在这里插入图片描述

  1. N to M(Encoder-Decoder模型或Seq2Seq模型):将输入数据编码成上下文向量,然后输出预测的序列。常用语文本翻译、阅读理解、对话生成等很多领域广泛应用。

二、完整代码

# 一、前期准备
# 1.1 导入所需包和设置GPU
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'  # 不显示等级2以下的提示信息
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM, SimpleRNN
import matplotlib.pyplot as plt

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]  # 如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  # 设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0], "GPU")
print(gpus)

#1.2 导入数据
df = pd.read_csv('R1heart.csv')
print(df)

df.isnull().sum()  #检查是否有空值

#二、数据预处理
#2.1 数据集划分
x = df.iloc[:,:-1]
y = df.iloc[:,-1]
 
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.1, random_state=1)
print(x_train.shape, y_train.shape)

# 将每一列特征标准化为标准正态分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
x_train = sc.fit_transform(x_train)
x_test = sc.transform(x_test)
 
x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1)
x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1)

#三、构建RNN模型
 
model = Sequential()
model.add(SimpleRNN(128, input_shape= (13,1),return_sequences=True,activation='relu'))
model.add(SimpleRNN(64,return_sequences=True, activation='relu'))
model.add(SimpleRNN(32, activation='relu'))
model.add(Dense(64, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.summary()

#四、编译模型
opt = tf.keras.optimizers.Adam(learning_rate=1e-4)
model.compile(loss='binary_crossentropy', optimizer=opt,metrics=['accuracy'])

#五、训练模型
epochs = 100
history = model.fit(x_train, y_train,
                    epochs=epochs,
                    batch_size=128,
                    validation_data=(x_test, y_test),
                    verbose=1)
#六、模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']
 
loss = history.history['loss']
val_loss = history.history['val_loss']
 
epochs_range = range(epochs)
 
plt.figure(figsize=(14, 4))
plt.subplot(1, 2, 1)
 
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
 
plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
 
scores = model.evaluate(x_test,y_test,verbose=0)
print("%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

打印结果:
在这里插入图片描述

三、代码解读

1.参数return_sequences

当return_sequences=True时,无论输入序列的长度如何,输出都将是一个三维数组,其形状为[batch_size, sequence_length, output_dim]。这在处理序列数据时非常有用,特别是当你需要在多个时间步上使用层的输出时。

当return_sequences=False(默认值)时,只有序列中的最后一个时间步的输出会被返回,输出形状为[batch_size, output_dim]。

2.调参过程

尝试将RNN层分别增加到三层和四层,层数越多精确度越高,其中前n-1层都需要加参数return_sequences=True,意味着它的输出将保留整个序列的信息,可以被下一个RNN层使用,否则就会出现维度不匹配的情况,比如simple_rnn_2 层期望的输入数据维度是3(即,一个三维张量),但实际接收到的输入数据维度是2,就会出现报错。
也可尝试对全连接层的层数进行调整,也可对激活函数activation进行调整。但效果都不如调整RNN层数精确度高。

小记:
距离新疆之旅还有半个月,已经有点浮躁了,因为此次旅行有点不太一样,一家四口整整齐齐的分别从各自呆的城市“一起出发”,汇聚到同一趟车上,神奇吧!此行并不是突发奇想的说走就走的旅行,这个所谓的蓄谋已久持续了4年,多少还是有点期待的。那就在畅玩之前先整个“两周畅学卡”吧!

参考:
【循环神经网络】5分钟搞懂RNN,3D动画深入浅出

  • 10
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值