深度学习笔记(一)——调参

本周开始每周更新一篇关于机器学习实战的案例,内容包括数据获取、完整代码与解析、模型调优等。希望可以坚持下来。另外,有写的不对的地方,欢迎指出,大家一起努力吧!

一、学习目标

  1. 了解Pytorch,并使用Pytorch构建一个深度学习程序
  2. 了解什么是深度学习
  3. 关于数据获取:无需本地下载数据,直接使用dataset下载MNIST数据集

二、代码解析

1、导入数据

train_ds = torchvision.datasets.MNIST('data', 
                                      train=True, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)

test_ds  = torchvision.datasets.MNIST('data', 
                                      train=False, 
                                      transform=torchvision.transforms.ToTensor(), # 将数据类型转化为Tensor
                                      download=True)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_ds,
                                       batch_size=batch_size,
                                       shuffle=True)

test_dl  = torch.utils.data.DataLoader(test_ds,
                                       batch_size=batch_size)

imgs, labels = next(iter(train_dl))
print(imgs.shape)
  1. torchvision.datasets是Pytorch自带的一个数据库,通过代码在线下载MNIST数据集。
    函数原型:
    torchvision.datasets.MNIST(root, train=True, transform=None, target_transform=None, download=False)

  2. torch.utils.data.DataLoader是Pytorch自带的一个数据加载器,结合了数据集和取样器,并且可以提供多个线程处理数据集。
    函数原型:
    torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=None, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, timeout=0, worker_init_fn=None, multiprocessing_context=None, generator=None, *, prefetch_factor=2, persistent_workers=False, pin_memory_device=‘’)

2、数据可视化

import numpy as np

 # 指定图片大小,图像大小为20宽、5高的绘图
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    # 维度缩减
    npimg = np.squeeze(imgs.numpy())
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg, cmap=plt.cm.binary)
    plt.axis('off')
    
plt.show()

squeeze()函数的功能是从矩阵shape中,去掉维度为1的。

3、构建CNN网络

import torch.nn.functional as F

num_classes = 10  # 图片的类别数

class Model(nn.Module):
     def __init__(self):
        super().__init__()
         # 特征提取网络
        self.conv1 = nn.Conv2d(1, 32, kernel_size=3)  # 第一层卷积,卷积核大小为3*3
        self.pool1 = nn.MaxPool2d(2)                  # 设置池化层,池化核大小为2*2
        self.conv2 = nn.Conv2d(32, 64, kernel_size=3) # 第二层卷积,卷积核大小为3*3   
        self.pool2 = nn.MaxPool2d(2) 
                                      
        # 分类网络
        self.fc1 = nn.Linear(1600, 64)          
        self.fc2 = nn.Linear(64, num_classes)
     # 前向传播
     def forward(self, x):
        x = self.pool1(F.relu(self.conv1(x)))     
        x = self.pool2(F.relu(self.conv2(x)))

        x = torch.flatten(x, start_dim=1)

        x = F.relu(self.fc1(x))
        x = self.fc2(x)
       
        return x

#加载并打印模型
from torchinfo import summary
# 将模型转移到GPU中(我们模型运行均在GPU中进行)
model = Model().to(device)

summary(model)

4、训练模型

(1)设置超参数
(2)编写训练函数(反向传播)
(3)编写测试函数
(4)正式训练

#设置超参数
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-2 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

#测试函数
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

#正式训练
epochs     = 5
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

1.pred.argmax(1) 返回数组 pred 在第一个轴(即行)上最大值所在的索引。这通常用于多类分类问题中。
2.item()将求和结果转换为标量值,以便在 Python 中使用或打印。
3(pred.argmax(1) == y).type(torch.float).sum().item()表示计算预测正确的样本数量,并将其作为一个标量值返回。

5、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))

plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

三、调整模型

提高模型准确率的方法因模型类型、数据集特征和任务类型而异。通常有一些常见的方法来提高模型的准确率:

1.调整学习率(Learning Rate): 适当调整学习率可以帮助模型更快地收敛到最优解,或者避免陷入局部最优解。如果学习率过大,可能会导致训练不稳定;如果学习率过小,训练速度可能会很慢。因此,可以尝试不同的学习率值,选择最优的学习率。

2.调整模型复杂度: 增加或减少模型的层数、每层的隐藏单元数量或参数数量,以调整模型的复杂度。有时候,过于简单的模型会欠拟合数据,而过于复杂的模型会过拟合数据,因此需要根据实际情况来调整模型的复杂度。

3.调整批次大小(Batch Size): 增加或减少批次大小,可以影响模型的训练速度和泛化性能。

4.正则化(Regularization): 添加正则化项,如L1正则化或L2正则化,可以减少模型的复杂度,避免过拟合。

5.使用预训练模型: 使用在大规模数据集上预训练好的模型(如ImageNet上训练好的模型),然后在目标任务上微调模型参数,可以加速模型收敛并提高准确率。

6.数据增强(Data Augmentation): 通过对训练数据进行变换,如随机裁剪、旋转、缩放、翻转等,可以增加训练样本的多样性,帮助模型更好地泛化到新的样本上。

7.调整优化器(Optimizer): 尝试不同的优化器算法,如Adam、SGD等,并调整其参数。

8.特征工程(Feature Engineering): 对输入数据进行更好的特征提取和选择,可以提高模型的性能。

9.集成学习(Ensemble Learning): 将多个模型的预测结果进行集成,可以提高模型的稳定性和准确率。

1)调整学习率:现有的学习率lr=0.01结果如下,尝试了增大和减小学习率,并没有提高精确度,故没有展示调整之后的。
没有调整前的结果
在这里插入图片描述
2)调整模型复杂度:全连接层的输出是64,现调整为800,虽然优化的不是很多,但确实有提高。(与调整学习率的图对比)
在这里插入图片描述
在这里插入图片描述
3)调整批次大小Batch Size。Batch Size=32,现调整为16,可见,准确率提高,损失减小。(与调整学习率的图对比)
在这里插入图片描述
在这里插入图片描述
4)调整训练次数epoch。epoch=5,现调整为10。准确率也会提高。(与调整学习率的图对比)
在这里插入图片描述
在这里插入图片描述

  • 8
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值