深度学习实战笔记(三)——CNN的卷积

一、完整代码

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

device

import os,PIL,random,pathlib

data_dir = r'D:\编程文件\数据库\P4猴逗病'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[4] for path in data_paths]
print(data_paths)
print(classeNames)


total_datadir = r'D:\编程文件\数据库\P4猴逗病'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406],
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print(total_data)

total_data.class_to_idx

train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
print(train_dataset, test_dataset)

print(train_size,test_size)

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)

if __name__ == '__main__':
    for X, y in test_dl:
        print("Shape of X [N, C, H, W]: ", X.shape)
        print("Shape of y: ", y.shape, y.dtype)
        break


import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))
        x = F.relu(self.bn2(self.conv2(x)))
        x = self.pool(x)
        x = F.relu(self.bn4(self.conv4(x)))
        x = F.relu(self.bn5(self.conv5(x)))
        x = self.pool(x)
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)
print(model)


loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)


# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)  # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)  # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()  # 反向传播
        optimizer.step()  # 每一步自动更新

        # 记录acc与loss
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc /= size
    train_loss /= num_batches

    return train_acc, train_loss


def test(dataloader, model, loss_fn):
    size = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)  # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)

            # 计算loss
            target_pred = model(imgs)
            loss = loss_fn(target_pred, target)

            test_loss += loss.item()
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc /= size
    test_loss /= num_batches

    return test_acc, test_loss


epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []

if __name__ == '__main__':
    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)

        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)

        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(
            template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss, epoch_test_acc * 100, epoch_test_loss))
    print('Done')


import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

二、调参过程

learn_rate = 1e-4;batch_size = 32;epochs = 20;SGD(初始参数)
在这里插入图片描述
在这里插入图片描述
learn_rate = 3e-4;batch_size = 50;epochs = 30;SGD(放手一搏,参数纷纷设置相对大一点)
在这里插入图片描述
在这里插入图片描述
learn_rate = 3e-4;batch_size = 50;epochs = 30;Adam(过拟合)
在这里插入图片描述
在这里插入图片描述
learn_rate = 3e-4;batch_size = 32;epochs = 30;Adam(显然大过头了,收一点)
在这里插入图片描述
learn_rate = 2e-4;batch_size = 32;epochs = 20;Adam(测试集精确度达91.1%)
在这里插入图片描述

三、结论与收获

  1. 上图结果不难看出,在优化器的选择上,Adam比SGD效果要好。Adam算法将不同的梯度给予不同的权重,使得神经网络在学习率稳定时,能快速、稳定的收敛到最佳点。
    • Adam算法的优点在于:
      具有自适应学习率,可以自动调整学习率。
      能够处理稀疏梯度,对参数的更新不受梯度的大小影响。
      在参数空间比较大、数据分布较分散和梯度的方向和大小较不一致时,性能较好。
  2. 卷积核的大小通常由人为根据特定的应用和经验来选择。
    常见的卷积核大小包括3x3、5x5、7x7等。
    较小的卷积核(如3x3)可以捕捉到局部特征,并具有较好的参数效率,
    而较大的卷积核可以捕捉到更广泛的特征,但需要更多的计算资源。
  3. 卷积核的具体值由网络在训练过程中通过数据学习和优化算法自动确定。
    以下是卷积核值确定的主要步骤:
    • 初始化:在训练开始时,卷积核的值通常是随机初始化的。常见的方法包括正态分布初始化、均匀分布初始化或基于特定规则的初始化。

    • 前向传播:在训练过程中,输入数据经过卷积操作,然后通过激活函数和可能的池化操作,最终产生输出。这个输出用于计算损失函数。

    • 反向传播和梯度下降:通过反向传播算法,计算每个卷积核的梯度,即改变这些值以减少损失函数的方向。然后,使用梯度下降或其变体(如Adam、RMSprop)来更新卷积核的值。

    • 迭代训练:上述过程在多个迭代(称为epochs)中反复进行。随着训练的进行,卷积核的值会逐渐调整,最终收敛到能够最佳识别特征的状态。

4.关于nn.BatchNorm2d

是什么???

位于卷积神经网络中的卷积层之后,激活函数之前,加了这样一行代码self.bn1 = nn.BatchNorm2d(12)。
在神经网络模型中,nn.BatchNorm2d(12) 是 PyTorch 中的批标准化(Batch Normalization)层。这里的12 是指输入数据的通道数。
批标准化会对每个特征通道的数据进行归一化,使得其均值接近于0,标准差接近于1。这有助于缓解梯度消失和爆炸问题,并且可以使得每一层的输入数据都保持在一个合理的范围内,从而提高模型的训练速度和泛化能力。

为什么???

下面是一些情况下需要使用 nn.BatchNorm2d 对卷积进行批标准化的原因:

  • 加速收敛:通过规范化每一层的输入数据分布,可以使得梯度下降更加稳定和高效,从而加快模型的收敛速度。

  • 防止梯度消失或爆炸:通过标准化每一层的输入数据分布,帮助缓解梯度消失或爆炸的问题,从而更好地训练深层网络。

  • 增强模型的泛化能力:批标准化可以视作一种正则化方法,有助于减少模型的过拟合风险。

  • 允许使用较大的学习率:批标准化可以使得每一层的输入数据分布更加稳定,从而允许使用更大的学习率进行训练。这有助于加快模型的收敛速度,并且可以使得模型更容易跳出局部最优点。

在训练深层神经网络时,通常建议使用批标准化来改善训练过程的效果。

  1. 对于输入层而言,channel代表图像的通道数量,当输入图像为RGB彩色图像,则channel = 3;如果是灰度图像,则channel = 1。

小结

昨晚早睡的结果就是今天一天完成一周的任务,睡觉是目前自认为最快最低成本补充精力的方式!吹爆!这是一方面,还有一方面要感谢我的学习小伙伴,对督促我一起学习,甜言蜜语不会说,真心感谢!

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值