深度学习之反向传播算法(backward())

文章目录

概念

反向传播(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。 该方法对网络中所有权重计算损失函数的梯度。 这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。(误差的反向传播)

算法的思路

多层神经网络的教学过程 反向传播 算法 为了说明这一点 使用如下图所示处理具有两个输入和一个输出的三层神经网络:

在这里插入图片描述

每个神经元由两个单元组成。 第一个单元将权重系数和输入信号的乘积相加。 第二单元实现非线性 函数,称为神经元激活函数。 信号 e 为加法器输出信号, y = f(e) 为非线性输出信号 元素。 信号 y 也是神经元的输出信号。

在这里插入图片描述

为了教授神经网络,我们需要训练数据集。 训练数据集由输入信号 ( x 1 和 x 2 ) 分配有相应的目标(期望的输出) z 。
网络训练是一个迭代过程。 每一个 使用来自训练数据集的新数据修改节点的迭代权重系数。 使用算法计算修改 如下面所描述的:
每个教学步骤都从强制训练集中的两个输入信号开始。 在这个阶段之后,我们可以确定输出信号值 每个网络层中的每个神经元。

下图说明了信号如何通过网络传播,符号 w (xm)n 之间的连接权重 x m 和 n 输入层中 符号 y n 表示神经元 n

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

通过隐藏层传播信号。 符号 w mn 表示神经元输出之间的连接权重 m 和 n 下一层

在这里插入图片描述在这里插入图片描述

通过输出层传播信号。

在这里插入图片描述

在下一个算法步骤中,将网络 y 与所需的输出值(目标)进行比较,找到 在训练数据集中。 差值称为误差信号 d的 输出层神经元。

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

的权重系数 w mn 等于计算输出值期间使用的权重系数。 只有 数据流的方向发生了变化(信号从输出一个接一个地传播到输入)。 该技术用于所有网络 层。 如果传播的错误来自少数神经元,则添加它们。 图示如下:

在这里插入图片描述
在这里插入图片描述在这里插入图片描述

当计算每个神经元的误差信号时,可以修改每个神经元输入节点的权重系数。 在下面的公式中 df(e)/de 表示神经元激活函数的导数(权重被修改)。

在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述

系数 H 影响网络教学速度。 有几个 技术来选择这个参数。 第一种方法是用较大的参数值开始示教过程。 虽然权重 系数正在建立,参数正在逐渐减小。 第二种更复杂的方法开始教学 小参数值。 在示教过程中,参数在示教前进时增大,然后在示教过程中再次减小。 最后阶段。 以低参数值开始教学过程可以确定权重系数符号。

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播算法深度学习中的核心算法之一,它是用来计算神经网络中参数的梯度,并根据梯度更新参数,从而实现模型的训练。 在PyTorch中,实现反向传播算法的一般步骤如下: 1. 构建计算图:首先,需要定义神经网络模型,并将输入数据传递给模型进行前向计算,得到模型的输出结果。 2. 计算损失函数:根据模型的输出结果和标签数据,计算损失函数。PyTorch中提供了一些常用的损失函数,如交叉熵损失函数、均方误差损失函数等,可以根据具体情况进行选择。 3. 计算梯度:通过调用损失函数的backward()方法,计算损失函数对每个参数的梯度。在计算梯度之前,需要将梯度清零,以避免之前的梯度对当前梯度的影响。 4. 参数更新:根据梯度信息和优化算法,更新模型的参数。PyTorch中提供了一些常用的优化算法,如随机梯度下降、Adam等。 下面是一个简单的示例代码,实现了一个简单的全连接神经网络,并使用反向传播算法进行训练: ```python import torch import torch.nn as nn import torch.optim as optim # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义输入数据和标签数据 inputs = torch.randn(1, 10) labels = torch.randn(1, 1) # 定义损失函数和优化算法 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 计算模型输出和损失函数 outputs = net(inputs) loss = criterion(outputs, labels) # 计算梯度并更新参数 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的代码中,首先定义了一个全连接神经网络模型,包含两个线性层。然后,定义了输入数据和标签数据。接着,定义了损失函数和优化算法,并将模型的参数传递给优化器。在每次训练迭代中,计算模型的输出结果和损失函数,然后使用反向传播算法计算梯度,并使用优化算法更新模型的参数。 需要注意的是,PyTorch中的反向传播算法是自动求导的,即不需要手动计算梯度,只需要通过调用backward()方法即可。另外,在每次迭代中,需要将梯度清零,否则会累加之前的梯度,导致结果不正确。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值