线性代数 【基础1】

[ 前四章重点 秩 ,后两章重点 特征值 ] \large[前四章重点\red{秩},后两章重点\red{特征值}] [前四章重点,后两章重点特征值]

行列式

逆序数:大的数在小的数之前为逆序,一个排列中所有逆向总数称为逆序数    逆序数:大的数在小的数之前为逆序,一个排列中所有逆向总数称为逆序数~~~ 逆序数:大的数在小的数之前为逆序,一个排列中所有逆向总数称为逆序数   (1234顺序,无逆序)
n 阶行列式 n × n [ 方的 ] n阶行列式n\times n[方的] n阶行列式n×n[方的]
行列式定义: n ! 项不同行不同列元素乘积的代数和 行列式定义:n!项不同行不同列元素乘积的代数和 行列式定义:n!项不同行不同列元素乘积的代数和

拉普拉斯展开式   拉普拉斯展开式\\~ 拉普拉斯展开式 
∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ \begin{vmatrix} A & C\\ O & B \end{vmatrix}= \begin{vmatrix} A & O\\ C & B \end{vmatrix} =\begin{vmatrix} A & O\\ C & B \end{vmatrix} =|A||B| AOCB = ACOB = ACOB =A∣∣B

∣ O A B C ∣ = ∣ O A B O ∣ = ∣ C A B O ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣   \begin{vmatrix} O & A\\ B & C \end{vmatrix}= \begin{vmatrix} O & A\\ B & O \end{vmatrix} =\begin{vmatrix} C & A\\ B & O \end{vmatrix} =(-1)^{mn}|A||B|\\~ OBAC = OBAO = CBAO =(1)mnA∣∣B 

范德蒙德行列式: ( 补充结论 : 关键行一次方 − x 1 . . . x n 均不相等 , 则 ∣ A ∣ ≠ 0 ) 范德蒙德行列式:(补充结论:关键行一次方-x_1...x_n 均不相等,则|A|\ne 0) 范德蒙德行列式:(补充结论:关键行一次方x1...xn均不相等,A=0)

∣ 1 1 1 1 a a 2 1 b b 2 ∣ = ( b − a ) ( b − a ) ( a − 1 ) [ ( A T ) T = A 行列互换,两次换回原位 ]   \begin{vmatrix} 1&1&1\\ 1&a&a^2\\ 1&b&b^2\\ \end{vmatrix}=(b-a)(b-a)(a-1)\qquad[(A^T)^T=A行列互换,两次换回原位]\\~ 1111ab1a2b2 =(ba)(ba)(a1)[(AT)T=A行列互换,两次换回原位] 
( 代数 余子式 A i j = ( − 1 ) 行 + 列 余子式 M i j ) (\pmb{\red{代数}余子式}A_{ij}=(-1)^{行+列}余子式M_{ij}) 代数余子式Aij=(1)+余子式Mij
按行 ( 或列 ) 展开定理推论 : 某一行 元素与 另一行 元素的代数余子式的 乘积之和为零 (伴随矩阵性质 1 证明矩阵乘法计算后仅对角线元素为元素乘对应余子式 = ∣ A ∣ , 其余为乘不同行之和)   按行(或列)\blue{展开定理推论}:\green{某一行}元素与\green{另一行}元素的代数余子式的\green{乘积之和为零} (伴随矩阵性质1证明矩阵乘法计算后仅对角线元素为元素乘对应余子式=|A|,其余为乘不同行之和)\\~ 按行(或列)展开定理推论某一行元素与另一行元素的代数余子式的乘积之和为零(伴随矩阵性质1证明矩阵乘法计算后仅对角线元素为元素乘对应余子式=A,其余为乘不同行之和) 

a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = { ∣ A ∣ i = j    0 i ≠ j a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn}=\begin{cases} |A| \quad i=j\\ ~~ 0 \quad i\ne j \end{cases} ai1Aj1+ai2Aj2+...+ainAjn={Ai=j  0i=j

a 1 i A 1 j + a 2 i A 2 j + . . . + a n i A n j = { ∣ A ∣ i = j    0 i ≠ j a_{1i}A_{1j}+a_{2i}A_{2j}+...+a_{ni}A_{nj}=\begin{cases} |A| \quad i=j\\ ~~ 0 \quad i\ne j \end{cases} a1iA1j+a2iA2j+...+aniAnj={Ai=j  0i=j

(证明 A A ∗ = ∣ A ∣ E ) (证明AA^*=|A|E) (证明AA=AE

方阵的行列式公式

矩阵 A 仅 n 阶矩阵 ( 方阵 ) 才有 ∣ A ∣ 矩阵A仅n阶矩阵(方阵)才有|A| 矩阵An阶矩阵(方阵)才有A

∣ k A ∣ = k n ∣ A ∣   |kA|=k^n|A|\\~ kA=knA 
∣ A B ∣ = ∣ A ∣ ∣ B ∣ = ∣ B ∣ ∣ A ∣ = ∣ B A ∣ (具体数值可以随意位置)   |AB|=|A||B|=|B||A|=|BA|(具体数值可以随意位置)\\~ AB=A∣∣B=B∣∣A=BA(具体数值可以随意位置) 
∣ A − 1 ∣ = ∣ A ∣ − 1   |A^{-1}|=|A|^{-1}\\~ A1=A1 
∣ A ∗ ∣ = ∣ A ∣ n − 1   |A^*|=|A|^{n-1}\\~ A=An1 
设 A 的特征值为 λ 1 , λ 2 , λ 3 , . . . , λ n , 则 ∣ A ∣ = ∏ i = 1 n λ i   ( 对角线乘积 )   设A的特征值为\lambda_1,\lambda_2,\lambda_3,...,\lambda_n,则|A|=\prod\limits_{i=1}^n\lambda_i~(对角线乘积) \\~ A的特征值为λ1,λ2,λ3,...,λn,A=i=1nλi (对角线乘积) 
若 A 与 B 相似 , 则 ∣ A ∣ = ∣ B ∣   若A与B相似,则|A|=|B| \\~ AB相似,A=B 

克莱姆法则 − 方阵且 ∣ A ∣ ≠ 0 有唯一解 ( 系数矩阵行列式 D ) x 1 = D 1 D , x 2 = D 2 D , . . . , x n = D n D      克莱姆法则-方阵且|A|\ne 0有唯一解(系数矩阵行列式D)x_1=\frac{D_1}{D},x_2=\frac{D_2}{D},...,x_n=\frac{D_n}{D}~~\\~ 克莱姆法则方阵且A=0有唯一解(系数矩阵行列式D)x1=DD1,x2=DD2,...,xn=DDn   
经典例题:递推展开 D n 相同形式(计算过程 − 秦九韶算法) − 或者按行展开化重要行列式(上 ( 下 ) 三角) 经典例题:递推展开D_n相同形式(计算过程-秦九韶算法)-或者按行展开化重要行列式(上(下)三角) 经典例题:递推展开Dn相同形式(计算过程秦九韶算法)或者按行展开化重要行列式(上()三角)

矩阵

( 默认 A m × n ) [ 行列式是一个数,矩阵是一个数表 ]   (默认A_{m\times n})[行列式是一个数,矩阵是一个数表]\\~ (默认Am×n)[行列式是一个数,矩阵是一个数表] 
矩阵乘法定义 [ 660 做题 − 矩阵乘法左乘行变换,右乘列变换 ] 矩阵乘法定义\quad[660做题-矩阵乘法左乘行变换,右乘列变换] 矩阵乘法定义[660做题矩阵乘法左乘行变换,右乘列变换]
一般情况下, A B = A C 且 A ≠ 0 ⇏ B = C 小点: A B = O ⇏ A = 0 或 B = 0 (二阶为例 − 1 个 1 其余 0 ) 一般情况下,AB=AC且A\ne0 \nRightarrow B=C \quad 小点:AB=O \nRightarrow A=0或B=0(二阶为例-1个1其余0) 一般情况下,AB=ACA=0B=C小点:AB=OA=0B=0(二阶为例11其余0
矩阵乘法满足结合律和分配律,不满足交换律和消去律 特别的 B = 0 , B = E , B = A − 1 , B = A ∗ 满足交换律 A B = B A , 则满足完全平方公式,平方差公式   矩阵乘法满足结合律和分配律,不满足交换律和消去律\\特别的B=0,B=E,B=A^{-1},B=A^*满足交换律AB=BA,则满足完全平方公式,平方差公式\\~ 矩阵乘法满足结合律和分配律,不满足交换律和消去律特别的B=0,B=E,B=A1,B=A满足交换律AB=BA,则满足完全平方公式,平方差公式 
添加满足消去律的充分条件: ①若 A 为可逆矩阵,则 A B = A C ⇒ B = C (两边同乘 A − 1 ) ②若 A 为列满秩矩阵,则 A B = A C ⇒ B = C ( r ( A ( B − C ) ) = r ( B − C ) = 0 , B − C 为零矩阵,则 B = C ) ③若 A 为行满秩矩阵,则 B A = C A ⇒ B = C   添加满足消去律的充分条件:\\①若A为可逆矩阵,则AB=AC\Rightarrow B=C(两边同乘A^{-1})\\②若A为列满秩矩阵,则AB=AC\Rightarrow B=C(r(A(B-C))=r(B-C)=0,B-C为零矩阵,则B=C)\\③若A为行满秩矩阵,则BA=CA\Rightarrow B=C\\~ 添加满足消去律的充分条件:A为可逆矩阵,则AB=ACB=C(两边同乘A1A为列满秩矩阵,则AB=ACB=Cr(A(BC))=r(BC)=0,BC为零矩阵,则B=CA为行满秩矩阵,则BA=CAB=C 
转置的性质 ( A + B ) T = A T + B T ( k A ) T = k A T ( A B ) T = B T A T (二阶为例) ( A T ) T = A (定义行列互换,两次还原) ∣ A T ∣ = ∣ A ∣ 转置的性质\\(A+B)^T=A^T+B^T\\(kA)^T=kA^T\\(AB)^T=B^TA^T(二阶为例)\\(A^T)^T=A(定义行列互换,两次还原)\\|A^T|=|A| 转置的性质(A+B)T=AT+BT(kA)T=kAT(AB)T=BTAT(二阶为例)(AT)T=A(定义行列互换,两次还原)AT=A

对称矩阵 A T = A 与反对称矩阵 A T = − A    ( 任意 n 阶矩阵均可分解为对称矩阵与反对称矩阵 ) 对称矩阵A^T=A与反对称矩阵A^T=-A~~(任意n阶矩阵均可分解为对称矩阵与反对称矩阵) 对称矩阵AT=A与反对称矩阵AT=A  (任意n阶矩阵均可分解为对称矩阵与反对称矩阵)

逆的定义:设 A 为 n 阶矩阵 , 若存在 B 为 n 阶矩阵,使得 A B = E 或 B A = E , 则称 A 可逆, B 为 A 的逆矩阵,记作 B = A − 1 逆的定义:设A为n阶矩阵,若存在B为n阶矩阵,使得AB=E或BA=E,则称A可逆,B为A的逆矩阵,记作B=A^{-1} 逆的定义:设An阶矩阵,若存在Bn阶矩阵,使得AB=EBA=E,则称A可逆,BA的逆矩阵,记作B=A1

逆的性质:   ( K A ) − 1 = 1 k A − 1 ( k ≠ 0 )   ( A B ) − 1 = B − 1 A − 1 (定义 A B ( B − 1 A − 1 ) = E )   ∣ A − 1 ∣ = 1 ∣ A ∣ (定义 ∣ A − 1 ∣ ⋅ ∣ A ∣ − 1 = ∣ A − 1 A ∣ − 1 = E − 1 = E , 故 ∣ A ∣ − 1 = 1 ∣ A ∣ = ∣ A − 1 ∣ )   ( A T ) − 1 = ( A − 1 ) T (用转置性质与逆的定义: A T ( A − 1 ) T = ( A − 1 A ) T = E , 故 ( A T ) − 1 = ( A − 1 ) T )   ( A − 1 ) − 1 = A (定义证明: A − 1 A = E ,故 ( A − 1 ) − 1 = A ) 逆的性质:\\~\\(KA)^{-1}=\frac{1}{k}A^{-1}(k\ne0)\\~\\(AB)^{-1}= B^{-1}A^{-1}(定义AB(B^{-1}A^{-1})=E) \\~\\ |A^{-1}|=\frac{1}{|A|}(定义|A^{-1}|\cdot|A|^{-1}=|A^{-1}A|^{-1}=E^{-1}=E,故|A|^{-1}=\frac{1}{|A|}=|A^{-1}|)\\~\\(A^T)^{-1}=(A^{-1})^T\quad(用转置性质与逆的定义:A^T(A^{-1})^T=(A^{-1}A)^T=E,故(A^T)^{-1}=(A^{-1})^T)\\~\\(A^{-1})^{-1}=A\quad(定义证明:A^{-1}A=E,故(A^{-1})^{-1}=A) 逆的性质: (KA)1=k1A1(k=0) (AB)1=B1A1(定义AB(B1A1)=E A1=A1(定义A1A1=A1A1=E1=E,A1=A1=A1 (AT)1=(A1)T(用转置性质与逆的定义:AT(A1)T=(A1A)T=E,(AT)1=(A1)T (A1)1=A(定义证明:A1A=E,故(A1)1=A


矩阵的逆

可逆的 充要 条件 ( n 阶矩阵可逆 )   ⇔ ∣ A ∣ ≠ 0 (第一章行列式 ∣ A − 1 ∣ = 1 ∣ A ∣ , 分母 ∣ A ∣ ≠ 0 )   ⇔ r ( A ) = n (满秩)   ⇔ A 的行 ( 或列 ) 向量组线性无关   ⇔ 齐次线性方程组 A x = 0 只有零解   ⇔ 非齐次线性方程组 A x = b 有唯一解 x = A − 1 b   ⇔ A 的特征值均不为零 ( 即 ∣ A ∣ = λ 1 . . . λ n ≠ 0 ) 可逆的\blue{充要}条件(n阶矩阵可逆)\\~\\ \Leftrightarrow\blue{|A|\ne 0}(第一章行列式|A^{-1}|=\frac{1}{|A|},分母|A|\ne0)\\~\\ \Leftrightarrow r(A)=n(满秩)\\~\\ \Leftrightarrow A的行(或列)向量组线性无关 \\~\\ \Leftrightarrow齐次线性方程组Ax=0只有零解 \\~\\ \Leftrightarrow 非齐次线性方程组Ax=b有唯一解x=A^{-1}b \\~\\ \Leftrightarrow A的特征值均不为零(即|A|=\lambda_1...\lambda_n \ne 0) 可逆的充要条件(n阶矩阵可逆) A=0(第一章行列式A1=A1,分母A=0 r(A)=n(满秩) A的行(或列)向量组线性无关 齐次线性方程组Ax=0只有零解 非齐次线性方程组Ax=b有唯一解x=A1b A的特征值均不为零(A=λ1...λn=0)

逆的求法:   ①逆的定义: A B = E 或 B A = E   ②初等变换法: ( A ∣ E ) → ( E ∣ A − 1 )     ③伴随矩阵法: A − 1 = A ∗ ∣ A ∣   ④分块矩阵法: [ A O O B ] − 1 = [ A − 1 O O B − 1 ] , [ O A B O ] − 1 = [ O B − 1 A − 1 O ] 逆的求法:\\~\\ ①逆的定义:AB=E或BA=E\\~\\ ②初等变换法:(A|E)\to(E|A^{-1}) \\~\\ \\~\\ ③伴随矩阵法:A^{-1}=\frac{A^*}{|A|}\\~\\ ④分块矩阵法:\begin{bmatrix}A&O \\ O&B\end{bmatrix}^{-1}=\begin{bmatrix}A^{-1}&O \\ O&B^{-1}\end{bmatrix},\begin{bmatrix}O&A \\ B&O\end{bmatrix}^{-1}=\begin{bmatrix}O&B^{-1} \\ A^{-1}&O\end{bmatrix} 逆的求法: 逆的定义:AB=EBA=E 初等变换法:(AE)(EA1)  伴随矩阵法:A1=AA 分块矩阵法:[AOOB]1=[A1OOB1][OBAO]1=[OA1B1O]


矩阵的秩

秩的定义: 若矩阵 A 有个 r 阶子式非零 , 所有的 r + 1 阶子式 ( 需存在 ) 均为零 , 则称 r 为 A 的秩,记作 r ( A ) , 并规定零矩阵的秩为零 秩的定义:\\若矩阵A有个r阶子式非零,所有的r+1阶子式(需存在)均为零,则称r为A的秩,记作r(A),并规定零矩阵的秩为零 秩的定义:若矩阵A有个r阶子式非零,所有的r+1阶子式(需存在)均为零,则称rA的秩,记作r(A),并规定零矩阵的秩为零
评注: ( 1 ) 若矩阵有个 r 阶自身非零 , 则 r ( A ) ⩾ r ( 2 ) 若矩阵 A 所有的 r + 1 阶子式均为零 , 则 r ( A ) < r + 1 ( 3 ) A ≠ O ⇔ r ( A ) ⩾ 1   评注:\\(1)若矩阵有个r阶自身非零,则r(A)\geqslant r\\(2)若矩阵A所有的r+1阶子式均为零,则r(A)<r+1\\(3)A\ne O \Leftrightarrow r(A)\geqslant 1\\~ 评注:(1)若矩阵有个r阶自身非零,r(A)r(2)若矩阵A所有的r+1阶子式均为零,r(A)<r+1(3)A=Or(A)1 
满秩的定义:设 A 为 m × n 阶矩阵 , 若 r ( A ) = m , 则称 A 为行满秩矩阵,若 r ( A ) = n 则称 A 为列满秩矩阵, A 为 n 阶矩阵,若 r ( A ) = n , 则称 A 为满秩矩阵 满秩的定义:设A为m\times n阶矩阵,若r(A)=m,则称A为行满秩矩阵,若r(A)=n则称A为列满秩矩阵,\\A为n阶矩阵,若r(A)=n,则称A为满秩矩阵 满秩的定义:设Am×n阶矩阵,r(A)=m,则称A为行满秩矩阵,若r(A)=n则称A为列满秩矩阵,An阶矩阵,若r(A)=n,则称A为满秩矩阵


秩的性质:   ( 1 ) 设 A 为 m × n 阶矩阵 , 则 r ( A ) ⩽ m i n { n , m }   ( 2 ) r ( A + B ) ⩽ r ( A ) + r ( B )   ( 3 ) 设 A 为 m × n 阶矩阵 , B 为 n × s 阶矩阵 , 则 r ( A B ) ⩽ m i n { r ( A ) , r ( B ) }   ( 4 ) m a x { r ( A ) , r ( B ) } ⩽ r ( A ∣ B ) ⩽ r ( A ) + r ( B )   ( 5 ) r ( A ) = r ( k A )   ( k ≠ 0 )   ( 6 ) 设 A 为 m × n 阶矩阵 , P 为 m 阶可逆矩阵 , Q 为 n 阶可逆矩阵 , 则 r ( A ) = r ( P A ) = r ( A Q ) = r ( P A Q )   ( 7 ) 设 A 为 m × n 阶矩阵 , 若 r ( A ) = n , 则 r ( A B ) = r ( B ) , 若 r ( A ) = m , 则 r ( C A ) = r ( C ) [ 左行右列 − 乘满秩矩阵 ]   ( 8 ) 若 r ( A ) = r ( A T ) = r ( A T A ) = r ( A A T )   ( 9 ) 设 A 为 m × n 阶矩阵 , B 为 n × s 阶矩阵 , 满足 A B = O , 则 r ( A ) + r ( B ) ⩽ n   秩的性质:\\~\\ (1)设A为m\times n阶矩阵,则r(A)\leqslant min\{n,m\} \\~\\(2) r(A+B)\leqslant r(A)+r(B)\\~\\ (3)设A为m\times n阶矩阵,B为n\times s阶矩阵 ,则r(AB)\leqslant min\{r(A),r(B)\} \\~\\ (4) max\{r(A),r(B)\} \leqslant r(A|B) \leqslant r(A)+ r(B)\\~\\ (5)r(A)=r(kA)~(k\ne 0) \\~\\ (6) 设A为m\times n阶矩阵,P为m阶可逆矩阵,Q为n阶可逆矩阵,则r(A)=r(PA)=r(AQ)=r(PAQ) \\~\\ (7)设A为m\times n阶矩阵,若r(A)=n,则r(AB)=r(B),若r(A)=m,则r(CA)=r(C) [左行右列-乘满秩矩阵] \\~\\ (8)若r(A)=r(A^T)=r(A^TA)=r(AA^T) \\~\\(9)设A为m\times n阶矩阵,B为n\times s阶矩阵,满足AB=O,则r(A)+r(B)\leqslant n \\~ 秩的性质: (1)Am×n阶矩阵,r(A)min{n,m} (2)r(A+B)r(A)+r(B) (3)Am×n阶矩阵,Bn×s阶矩阵,r(AB)min{r(A),r(B)} (4)max{r(A),r(B)}r(AB)r(A)+r(B) (5)r(A)=r(kA) (k=0) (6)Am×n阶矩阵,Pm阶可逆矩阵,Qn阶可逆矩阵,r(A)=r(PA)=r(AQ)=r(PAQ) (7)Am×n阶矩阵,r(A)=n,r(AB)=r(B),r(A)=m,r(CA)=r(C)[左行右列乘满秩矩阵] (8)r(A)=r(AT)=r(ATA)=r(AAT) (9)Am×n阶矩阵,Bn×s阶矩阵,满足AB=O,r(A)+r(B)n 


秩的求法: A 为数字矩阵 , 初等行变换为 行阶梯形矩阵 , r ( A ) 等于 非零行的行数 A 为抽象矩阵:利用秩的定义或性质 秩的求法:A为数字矩阵,初等行变换为\blue{行阶梯形矩阵},r(A)等于\blue{非零行的行数}\\A为抽象矩阵:利用秩的定义或性质 秩的求法:A为数字矩阵,初等行变换为行阶梯形矩阵,r(A)等于非零行的行数A为抽象矩阵:利用秩的定义或性质

例题(化简,若为行列式 ∣ A ∣ 是否为 0 ,例如:不满秩且 = n − 1 , 则 n − 1 阶子式 ≠ 0 ) 例题(化简,若为行列式|A|是否为0,例如:不满秩且=n-1,则n-1阶子式\ne 0) 例题(化简,若为行列式A是否为0,例如:不满秩且=n1,n1阶子式=0


伴随矩阵

伴随矩阵的定义:设 n 阶矩阵 A = ( a i j ) , 由 a i j 的 代数 余子式 A i j = ( − 1 ) 行 + 列 M i j 构成的矩阵称为 A 的伴随矩阵 , 记作 A ∗ [ 行列余子式下标行列对称互换 ] 伴随矩阵的定义:设n阶矩阵A=(a_{ij}),由a_{ij}的\blue{代数}余子式A_{ij}=\blue{(-1)^{行+列}}M_{ij}构成的矩阵称为A的伴随矩阵,记作A^*[行列余子式下标行列对称互换] 伴随矩阵的定义:设n阶矩阵A=(aij),aij代数余子式Aij=(1)+Mij构成的矩阵称为A的伴随矩阵,记作A[行列余子式下标行列对称互换]

( A 11 , A 21 . . . A n 1 A 12 , A 22 . . . A n 2 ⋮ ⋱ ⋮ A 1 n A 2 n . . . A n n )   称 A 为伴随矩阵 , 记作 A ∗   \begin{pmatrix} A_{11}, &A_{21}&...&A_{n1} \\ A_{12},& A_{22}&...&A_{n2} \\ \vdots&&\ddots&\vdots \\A_{1n}&A_{2n}&...&A_{nn} \end{pmatrix}\\~\\称A为伴随矩阵,记作A^*\\~ A11,A12,A1nA21A22A2n.........An1An2Ann  A为伴随矩阵,记作A 
【评注】设 A 为 ( a b c d ) , 则 A ∗ = ( A 11 A 21 A 12 A 22 ) = ( d − b − c a ) 【主对角互换,副对角取反】   若 A 可逆(方阵且 ∣ A ∣ ≠ 0 ): A − 1 = 1 ∣ A ∣ A ∗ = 1 a d − b c ( d − b − c a )   【评注】设A为\begin{pmatrix} a&b \\ c&d \end{pmatrix},则A^*=\begin{pmatrix} A_{11}&A_{21} \\A_{12}&A_{22} \end{pmatrix}=\begin{pmatrix} d&-b \\ -c&a \end{pmatrix} 【主对角互换,副对角取反】\\~\\ 若A可逆(方阵且|A|\ne0):A^{-1} =\frac{1}{|A|}A^*=\frac{1}{ad-bc}\begin{pmatrix} d&-b \\ -c&a \end{pmatrix} \\~ 【评注】设A(acbd),A=(A11A12A21A22)=(dcba)【主对角互换,副对角取反】 A可逆(方阵且A=0):A1=A1A=adbc1(dcba) 

( A ∗ 数值型按正常展开 A 计算代数余子式 , 注意填的时候行列互换) (A^*数值型按正常展开A计算代数余子式,注意填的时候行列互换) A数值型按正常展开A计算代数余子式,注意填的时候行列互换)


p r 性质 1 [ 矩阵乘法后展开原则 ] : A A ∗ = ( a 11 a 12 a 21 a 22 ) ( A 11 A 21 A 12 A 22 ) = ( a 11 A 11 + a 12 A 12 a 11 A 21 + a 12 A 22 a 21 A 11 + a 22 A 12 a 21 A 21 + a 22 A 22 ) = ( ∣ A ∣ ∣ A ∣ ) = ∣ A ∣ ( 1 1 ) = ∣ A ∣ E   pr性质1[矩阵乘法后展开原则]:AA^*=\begin{pmatrix}a_{11}&a_{12} \\a_{21}&a_{22} \end{pmatrix}\begin{pmatrix}A_{11}&A_{21} \\A_{12}&A_{22} \end{pmatrix}=\begin{pmatrix}a_{11}A_{11}+a_{12}A_{12}&a_{11}A_{21} +a_{12}A_{22}\\a_{21}A_{11} +a_{22}A_{12}&a_{21}A_{21}+a_{22}A_{22} \end{pmatrix}=\begin{pmatrix}|A|& \\&|A| \end{pmatrix}=|A|\begin{pmatrix}1& \\&1 \end{pmatrix}=|A|E\\~ pr性质1[矩阵乘法后展开原则]AA=(a11a21a12a22)(A11A12A21A22)=(a11A11+a12A12a21A11+a22A12a11A21+a12A22a21A21+a22A22)=(AA)=A(11)=AE 
伴随矩阵的性质: ( 大部分证明用到性质 ( 1 ) ) ( A ∗ 满足交换律) ( 1 ) A A ∗ = A ∗ A = ∣ A ∣ E    ∣ A ∣ ≠ 0 可逆 →   A − 1 = 1 ∣ A ∣ A ∗ , A ∗ = ∣ A ∣ A − 1   ( 2 ) ( k A ) ∗ = k n − 1 A ∗   ( 3 ) ( A B ) ∗ = B ∗ A ∗   ( 4 ) ∣ A ∗ ∣ = ∣ A ∣ n − 1   ( 5 ) ( A T ) ∗ = ( A ∗ ) T   ( 6 ) ( A − 1 ) ∗ = ( A ∗ ) − 1 = A ∣ A ∣     ( 7 ) ( A ∗ ) ∗ = ∣ A ∣ n − 2 A   ( 8 ) r ( A ∗ ) = { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) < n − 1   伴随矩阵的性质:(大部分证明用到性质(1))\\(A^*满足交换律)\\(1)AA^*=A^*A=|A|E ~~\frac{|A|\ne0可逆}{}\to~A^{-1}=\frac{1}{|A|}A^*,A^*=|A|A^{-1} \\~\\ (2)(kA)^*=k^{n-1}A^* \\~\\ (3)(AB)^*=B^*A^* \\~\\(4) |A^*|=|A|^{n-1} \\~\\(5) (A^T)^*= (A^*)^T \\~\\(6)(A^{-1})^*=(A^{*})^{-1}=\frac{A}{|A|} \\~\\ \\~\\(7) (A^*)^*=|A|^{n-2}A \\~\\(8) r(A^*) =\begin{cases}n,r(A)=n \\ 1,r(A)=n-1\\0,r(A)<n-1 \end{cases}\\~ 伴随矩阵的性质:(大部分证明用到性质(1))A满足交换律)(1)AA=AA=AE  A=0可逆 A1=A1A,A=AA1 (2)(kA)=kn1A (3)(AB)=BA (4)A=An1 (5)(AT)=(A)T (6)(A1)=(A)1=AA  (7)(A)=An2A (8)r(A)= n,r(A)=n1,r(A)=n10,r(A)<n1 

初等变换与初等矩阵

初等变换 − 左行右列 \red{初等变换-左行右列} 初等变换左行右列
( 1 ) 两行 ( 或列 ) 互换 ( 2 ) 一行 ( 或列 ) 互换 ( 3 ) 一行乘 k 加到另一行 ( 或列 )   (1)两行(或列)互换\\(2)一行(或列)互换\\(3)一行乘k加到另一行(或列) \\~ (1)两行(或列)互换(2)一行(或列)互换(3)一行乘k加到另一行(或列) 
初等矩阵定义:单位矩阵 E 经过一次初等变换得到的矩阵 初等矩阵定义:单位矩阵E经过一次初等变换得到的矩阵 初等矩阵定义:单位矩阵E经过一次初等变换得到的矩阵
( 1 ) E ( i , j ) ( 2 ) E 的第 i 行 ( 或列 ) 乘非零常数 k 得到的初等矩阵 , 记作 E ( i ( k ) ) ( 3 ) 第 j 行乘 k 加到第 i 行 ( 或第 i 列乘 k 加到第 j 列 ) 【从后往前说行 j → i 】 E ( i j ( k ) ) (1)E(i,j)\\(2)E的第i行(或列)乘非零常数k得到的初等矩阵,记作E(i(k))\\(3)第j行乘k加到第i行(或第i列乘k加到第j列)【从后往前说行j\to i】E({ij}(k)) (1)E(i,j)(2)E的第i(或列)乘非零常数k得到的初等矩阵,记作E(i(k))(3)j行乘k加到第i(或第i列乘k加到第j)【从后往前说行jiE(ij(k))

初等变换和初等矩阵性质: ( 1 ) ∣ E ( i , j ) ∣ = − 1 , ∣ E ( i ( k ) ) ∣ = k , ∣ E ( i j ( k ) ) ∣ = 1 ( 2 ) E ( i , j ) T = E ( i , j ) , E ( i ( k ) ) T = E ( i ( k ) ) , E i j ( k ) T = E ( j i ( k ) ) ( 3 ) E ( i , j ) − 1 = E ( i , j ) , E ( i ( k ) ) − 1 = E ( i ( 1 k ) ) , E ( i j ( k ) ) − 1 = E i j ( − k ) ( 4 ) 初等行 ( 或列 ) 变换相当于左 ( 或右 ) 乘相应的初等矩阵 ( 5 ) 可逆矩阵可以写成有限个初等矩阵的乘积   初等变换和初等矩阵性质:\\(1)|E(i,j)|=-1,|E(i(k))|=k,|E({ij}(k))|=1\\(2)E(i,j)^T=E(i,j),E(i(k))^T=E(i(k)),E_{ij}(k)^T=E({ji}(k))\\ \blue{(3)}E(i,j)^{-1}=E(i,j),E(i(k))^{-1}=E(i(\frac{1}{k})),E({ij}(k))^{-1}=E_{ij}(-k) \\(4)初等行(或列)变换相当于左(或右)乘相应的初等矩阵 \\(5)可逆矩阵可以写成有限个初等矩阵的乘积 \\~ 初等变换和初等矩阵性质:(1)E(i,j)=1,E(i(k))=k,E(ij(k))=1(2)E(i,j)T=E(i,j),E(i(k))T=E(i(k)),Eij(k)T=E(ji(k))(3)E(i,j)1=E(i,j),E(i(k))1=E(i(k1)),E(ij(k))1=Eij(k)(4)初等行(或列)变换相当于左(或右)乘相应的初等矩阵(5)可逆矩阵可以写成有限个初等矩阵的乘积 
【初等变换和初等矩阵的应用】 ( 1 )可逆矩阵与单位矩阵等价,从而可以经过初等变换求矩阵的逆 ( 2 )初等变换不改变矩阵的秩,从而可以经过初等变换求矩阵的秩 ( 3 )初等行变换不改变向量组的线性关系,从而可以经过初等行变换求列向量组的极大线性无关组 ( 4 )初等行变换不改变线性方程组的解,从而可以经过初等行变换求线性方程组的解   【初等变换和初等矩阵的应用】 \\(1)可逆矩阵与单位矩阵等价,从而可以经过初等变换求矩阵的逆\\(2)初等变换不改变矩阵的秩,从而可以经过初等变换求矩阵的秩\\(3)初等行变换不改变向量组的线性关系,从而可以经过初等行变换求列向量组的极大线性无关组\\(4)初等行变换不改变线性方程组的解,从而可以经过初等行变换求线性方程组的解\\~ 【初等变换和初等矩阵的应用】1)可逆矩阵与单位矩阵等价,从而可以经过初等变换求矩阵的逆2)初等变换不改变矩阵的秩,从而可以经过初等变换求矩阵的秩3)初等行变换不改变向量组的线性关系,从而可以经过初等行变换求列向量组的极大线性无关组4)初等行变换不改变线性方程组的解,从而可以经过初等行变换求线性方程组的解 
矩阵等价定义:矩阵 A 经过有限次初等变换为矩阵 B ,则称 A 与 B 等价 , 记作 A ≅ B 矩阵等价定义:矩阵A经过有限次初等变换为矩阵B,则称A与B等价,记作A\cong B 矩阵等价定义:矩阵A经过有限次初等变换为矩阵B,则称AB等价,记作AB
矩阵等价充要条件:设 A , B 为 m × n 阶矩阵 , A 与 B 等价 ⇔ 存在 m 阶矩阵可逆矩阵 P 与 n 阶可逆矩阵 Q , 使得 B = P A Q ⇔ r ( A ) = r ( B )   矩阵等价充要条件:设A,B为m\times n阶矩阵,A与B等价 \\ \Leftrightarrow 存在m阶矩阵可逆矩阵P与n阶可逆矩阵Q,使得B=PAQ \\ \Leftrightarrow \blue{r(A)=r(B)} \\~ 矩阵等价充要条件:设A,Bm×n阶矩阵,AB等价存在m阶矩阵可逆矩阵Pn阶可逆矩阵Q,使得B=PAQr(A)=r(B) 

分块矩阵

分块矩阵乘法 − 【题目给两个矩阵条件反射使用】 − 前列后行分法相同 \red{分块矩阵乘法}-【题目给两个矩阵条件反射使用】-\green{前列后行分法相同} 分块矩阵乘法【题目给两个矩阵条件反射使用】前列后行分法相同
( 1 ) 将 A 按列分块,得 A B = ( α 1 , α 2 , . . . , α n ) ( b 11 , b 21 . . . b n 1 b 12 , b 22 . . . b n 2 ⋮ ⋱ ⋮ b 1 n b 2 n . . . b n n ) (1)将A按列分块,得\\ AB=(\alpha_1,\alpha_2,...,\alpha_n)\begin{pmatrix} b_{11}, &b_{21}&...&b_{n1} \\ b_{12},& b_{22}&...&b_{n2}& \\ \vdots&&\ddots&\vdots \\b_{1n}&b_{2n}&...&b_{nn} \end{pmatrix} (1)A按列分块,得AB=(α1,α2,...,αn) b11,b12,b1nb21b22b2n.........bn1bn2bnn

( 1 ) 将 B 按列分块,得 A B = A ( β 1 , β 2 , . . . , β s ) = ( A β 1 , A β 2 , . . . , A β s )   (1)将B按列分块,得\\AB=A(\beta_1,\beta_2,...,\beta_s)=(A\beta_1,A\beta_2,...,A\beta_s)\\~ (1)B按列分块,得AB=A(β1,β2,...,βs)=(Aβ1,Aβ2,...,Aβs) 

分块矩阵的转置 [ 行列互换且内部矩阵也需转置 ] ( A 11 … A 1 t ⋮ ⋮ A s 1 … A s t ) T = ( A 11 T … A s 1 T ⋮ ⋮ A 1 t T … A s t T )   分块矩阵的转置[行列互换且内部矩阵也需转置]\begin{pmatrix} A_{11}&\dots&A_{1t} \\ \vdots&&\vdots \\ A_{s1}&\dots&A_{st}\end{pmatrix}^T= \quad \begin{pmatrix} A_{11}^T&\dots&A_{s1}^T \\ \vdots&&\vdots \\ A_{1t}^T&\dots&A_{st}^T\end{pmatrix}\\~ 分块矩阵的转置[行列互换且内部矩阵也需转置] A11As1A1tAst T= A11TA1tTAs1TAstT  

分块矩阵的逆: ( A O O B ) − 1 = ( A − 1 O O B − 1 ) , ( O A B O ) − 1 = ( O B − 1 A − 1 O ) 分块矩阵的逆:\begin{pmatrix} A&O \\ O&B \end{pmatrix}^{-1}=\begin{pmatrix} A^{-1}&O \\ O&B^{-1} \end{pmatrix},\quad \begin{pmatrix} O&A \\ B&O \end{pmatrix}^{-1}=\begin{pmatrix} O&B^{-1} \\ A^{-1}&O \end{pmatrix} 分块矩阵的逆:(AOOB)1=(A1OOB1),(OBAO)1=(OA1B1O)
【 A 2 × 2 ∗ 同分块矩阵的公式类似,可以没有零,但求 A − 1 = 1 ∣ A ∣ A ∗ (即别忘了系数 1 ∣ A ∣ )】 【A_{2\times 2}^*同分块矩阵的公式类似,可以没有零,但求A^{-1}=\frac{1}{|A|}A^*(即别忘了系数\frac{1}{|A|})】 A2×2同分块矩阵的公式类似,可以没有零,但求A1=A1A(即别忘了系数A1)】


向量

向量的定义: ( α 1 , α 2 , . . . , α n ) 为 n 维行向量, ( α 1 , α 2 , . . . , α n ) T 为 n 维列向量 向量的定义:(\alpha_1,\alpha_2,...,\alpha_n)为n维行向量,(\alpha_1,\alpha_2,...,\alpha_n)^T为n维列向量 向量的定义:(α1,α2,...,αn)n维行向量,(α1,α2,...,αn)Tn维列向量

向量的内积:设 α = ( a 1 , a 2 . . . , a n ) , β = ( b 1 , b 2 . . . , b n ) 内积 [ α , β ] = α T β = β T α = a 1 b 1 + a 2 b 2 + . . . + a n b n , 若 [ α , β ] = 0 , 则称 α 与 β 正交 ( 显然零向量与任意向量正交 ) 向量的内积:设\alpha=(a_1,a_2...,a_n),\beta=(b_1,b_2...,b_n)\\内积[\alpha,\beta]=\alpha^T\beta=\beta^T\alpha=a_1b_1+a_2b_2+...+a_nb_n,\\若[\alpha,\beta]=0,则称\alpha与\beta正交(显然零向量与任意向量正交) 向量的内积:设α=(a1,a2...,an),β=(b1,b2...,bn)内积[α,β]=αTβ=βTα=a1b1+a2b2+...+anbn,[α,β]=0,则称αβ正交(显然零向量与任意向量正交)

向量长度的定义: ∣ ∣ α ∣ ∣ = α T α = α 1 2 + α 2 2 + ⋅ ⋅ ⋅ + α n 2 向量长度的定义:||\alpha||=\sqrt{\alpha^T\alpha}=\sqrt{\alpha_1^2+\alpha_2^2+\cdot\cdot\cdot+\alpha_n^2} 向量长度的定义:∣∣α∣∣=αTα =α12+α22++αn2

正交矩阵

正交矩阵定义:设 A 为 n 阶矩阵 , 若 A A T = E 或 A T A = E ,则称 A 为正交矩阵 正交矩阵定义:设A为n阶矩阵,若AA^T=E或A^TA=E,则称A为正交矩阵 正交矩阵定义:设An阶矩阵,AAT=EATA=E,则称A为正交矩阵

正交矩阵的充要条件: ⇔ A T = A − 1 (定义) ⇔ A 的列 ( 或行 ) 向量组为单位正交的向量组(本质) 正交矩阵的充要条件:\\ \Leftrightarrow A^T=A^{-1} (定义)\\ \Leftrightarrow A的列(或行)向量组为单位正交的向量组(本质) 正交矩阵的充要条件:AT=A1(定义)A的列(或行)向量组为单位正交的向量组(本质)

正交矩阵的性质: A 为 n 阶正交矩阵 ⇔ ∣ A ∣ = ± 1 ⇔ 若 A , B 为 n 阶矩阵,则 − A , A B , A T , A − 1 , A ∗ 均为正交矩阵 ( A − 1 = A T ) 正交矩阵的性质:\\A为n阶正交矩阵 \\ \Leftrightarrow |A| =\pm 1 \\ \Leftrightarrow 若A,B为n阶矩阵,则-A,AB,A^T,A^{-1},A^*均为正交矩阵(A^{-1}=A^T) 正交矩阵的性质:An阶正交矩阵A=±1A,Bn阶矩阵,则A,AB,AT,A1,A均为正交矩阵(A1=AT)


证明: A A T = E , ( a 1 a 2 … a n ) T ⋅ ( a 1 a 2 … a n ) = ( a 1 T a 1 ⋯ a 1 T a n ⋮ ⋮ a n T a 1 ⋯ a n T a n ) = E (将 a i T a i = 1 , a i T a j = 0 ( i ≠ j ) , i , j = 1 , . . . , n [ 内积 0 ] )   证明:AA^T=E,(a_1a_2\dots a_n)^T\cdot(a_1a_2\dots a_n)= \begin{pmatrix} a_1^Ta_1 &\cdots&a_1^Ta_n \\ \vdots &&\vdots \\ a_n^Ta_1 &\cdots&a_n^Ta_n \\ \end{pmatrix}=E \\(将a_i^Ta_i=1,a_i^Ta_j=0(i\ne j),i,j=1,...,n[内积0]) \\~ 证明:AAT=E,(a1a2an)T(a1a2an)= a1Ta1anTa1a1TananTan =E(将aiTai=1,aiTaj=0(i=j),i,j=1,...,n[内积0] 

∣ ∣ a ∣ ∣ = a T a = ( a 1 a 2 … a n ) ( a 1 a 2 ⋮ a n ) = a 1 2 + a 2 2 + . . . + a n 2 = 1 ( a 1 2 + a 2 2 + . . . + a n 2 = 1 [ 长度 1 ] , 故 a 1 , a 2 … a n 为单位正交 [ 长度 1 内积 0 ] )   ||a||=a^Ta=(a_1a_2\dots a_n)\begin{pmatrix} a_1 \\a_2\\ \vdots \\a_n \end{pmatrix}=a_1^2+ a_2^2+...+a_n^2=1(\sqrt{a_1^2+ a_2^2+...+a_n^2}=1[长度1],故a_1,a_2\dots a_n为单位正交[长度1内积0])\\~ ∣∣a∣∣=aTa=(a1a2an) a1a2an =a12+a22+...+an2=1a12+a22+...+an2 =1[长度1],a1a2an为单位正交[长度1内积0] 

正交化

定义 5.3 :如果向量组 α 1 , α 2 , α 3 线性无关,令 定义5.3:如果向量组\alpha_1,\alpha_2,\alpha_3线性无关,令 定义5.3:如果向量组α1,α2,α3线性无关,令

正交化 [ 记公式 ] : 正交化[记公式]: 正交化[记公式]
β 1 = α 1 \beta_1=\alpha_1 β1=α1

β 2 = α 2 − ( α 2 , β 1 ) ( β 1 , β 1 ) β 1 \beta_2=\alpha_2-\frac{(\alpha_2,\beta_1)}{(\beta_1,\beta_1)}\beta_1 β2=α2(β1,β1)(α2,β1)β1

β 3 = α 3 − ( α 3 , β 1 ) ( β 1 , β 1 ) β 1 − ( α 3 , β 2 ) ( β 2 , β 2 ) β 2 \beta_3=\alpha_3-\frac{(\alpha_3,\beta_1)}{(\beta_1,\beta_1)}\beta_1-\frac{(\alpha_3,\beta_2)}{(\beta_2,\beta_2)}\beta_2 β3=α3(β1,β1)(α3,β1)β1(β2,β2)(α3,β2)β2

再将其单位化: ( 有技巧 − 直接取系数平方和的根号作为 ∣ ∣ β ∣ ∣ ) 再将其单位化:(有技巧-直接取系数平方和的根号作为||\beta||) 再将其单位化:(有技巧直接取系数平方和的根号作为∣∣β∣∣)

γ 1 = β 1 ∣ ∣ β 1 ∣ ∣ , γ 2 = β 2 ∣ ∣ β 2 ∣ ∣ , γ 3 = β 3 ∣ ∣ β 3 ∣ ∣ \gamma_1=\frac{\beta_1}{||\beta_1||},\gamma_2=\frac{\beta_2}{||\beta_2||},\gamma_3=\frac{\beta_3}{||\beta_3||} γ1=∣∣β1∣∣β1,γ2=∣∣β2∣∣β2,γ3=∣∣β3∣∣β3

从 α 1 , α 2 , α 3 到 γ 1 , γ 2 , γ 3 的过程称为施密特正交化 从\alpha_1,\alpha_2,\alpha_3到\gamma_1,\gamma_2,\gamma_3的过程称为施密特正交化 α1,α2,α3γ1,γ2,γ3的过程称为施密特正交化

线性表示

线性表示的定义:设向量组 α 1 , α 2 , . . . , α n 与向量 β 若存在一组数 k 1 , k 2 , . . . , k n 使得 β = k 1 α 1 + k 2 α 2 + . . . + k n α n , 则称 β 可由 α 线性表示   线性表示的定义:设向量组\alpha_1,\alpha_2,...,\alpha_n与向量\beta 若存在一组数k_1,k_2,...,k_n使得\beta=k_1\alpha_1+k_2\alpha_2+...+k_n\alpha_n,则称\beta可由\alpha线性表示\\~ 线性表示的定义:设向量组α1,α2,...,αn与向量β若存在一组数k1,k2,...,kn使得β=k1α1+k2α2+...+knαn,则称β可由α线性表示 
向量组等价:设向量组 ( 1 ) 与向量组 ( 2 ) ,向量组 ( 1 ) 的每个向量均可由向量组 ( 2 ) 线性表示,则称向量组 ( 1 ) 与向量组 ( 2 ) 等价   向量组等价:设向量组(1)与向量组(2),向量组(1)的每个向量均可由向量组(2)线性表示,则称向量组(1)与向量组(2)等价\\~ 向量组等价:设向量组(1)与向量组(2),向量组(1)的每个向量均可由向量组(2)线性表示,则称向量组(1)与向量组(2)等价 
线性表示的充要条件 非零向量 β 可由 α 1 , α 2 , . . . , α s 线性表示 ⇔ 非齐次线性方程组 ( α 1 , α 2 , . . . , α s ) ( x 1 x 2 ⋮ x s ) = β 有解(即 x 1 α 1 + ⋯ + x 2 α 2 = β 有解,即可线性表示【联系三四章】)   ⇔ r ( α 1 , α 2 , . . . , α s ) = r ( α 1 , α 2 , . . . , α s ∣ β )   线性表示的充要条件\\非零向量\beta可由\alpha_1,\alpha_2,...,\alpha_s线性表示\\ \Leftrightarrow非齐次线性方程组(\alpha_1,\alpha_2,...,\alpha_s) \begin{pmatrix} x_1 \\ x_2 \\ \vdots\\ x_s\end{pmatrix}=\beta有解 (即x_1\alpha_1+\dots+x_2\alpha_2=\beta有解,即可线性表示【联系三四章】) \\~\\ \Leftrightarrow r(\alpha_1,\alpha_2,...,\alpha_s)=r(\alpha_1,\alpha_2,...,\alpha_s|\beta) \\~ 线性表示的充要条件非零向量β可由α1,α2,...,αs线性表示非齐次线性方程组(α1,α2,...,αs) x1x2xs =β有解(即x1α1++x2α2=β有解,即可线性表示【联系三四章】) r(α1,α2,...,αs)=r(α1,α2,...,αsβ) 

向量组等价的充要条件: 向量组① α 1 , α 2 , . . . , α s 与向量组② β 1 , β 2 , . . . , β s 等价 ⇔ r ( ① ) = r ( ① , ② ) = r ( ② ) 【三秩相等】 向量组等价的充要条件:\\ 向量组①\alpha_1,\alpha_2,...,\alpha_s与向量组②\beta_1,\beta_2,...,\beta_s等价 \Leftrightarrow r(①)=r(①,②)=r(②)【三秩相等】 向量组等价的充要条件:向量组α1,α2,...,αs与向量组β1,β2,...,βs等价r()=r(,)=r()【三秩相等】

线性表示的充分条件 : 设向量组 α 1 , α 2 , . . . , α s 线性无关 , 向量组 α 1 , α 2 , . . . , α s , β 线性相关 , 则 β 可由 α 1 , α 2 , . . . , α s 唯一的线性表示 线性表示的充分条件:设向量组\alpha_1,\alpha_2,...,\alpha_s线性无关,向量组\alpha_1,\alpha_2,...,\alpha_s,\beta线性相关,则\beta可由\alpha_1,\alpha_2,...,\alpha_s唯一的线性表示 线性表示的充分条件:设向量组α1,α2,...,αs线性无关,向量组α1,α2,...,αs,β线性相关,β可由α1,α2,...,αs唯一的线性表示
【线性表示的求法】: 设向量 β 可由向量组 α 1 , α 2 , . . . , α n 线性表示 , 对 ( α 1 , α 2 , . . . , α n ∣ β ) 作初等行变换 , 化为 最简行阶梯型矩阵 , 解得线性表示的系数 【线性表示的求法】:\\设向量\beta可由向量组\alpha_1,\alpha_2,...,\alpha_n线性表示,对(\alpha_1,\alpha_2,...,\alpha_n|\beta)作初等行变换,化为\blue{最简行阶梯型矩阵},解得线性表示的系数 【线性表示的求法】:设向量β可由向量组α1,α2,...,αn线性表示,(α1,α2,...,αnβ)作初等行变换,化为最简行阶梯型矩阵,解得线性表示的系数


线性无关与线性相关

线性无关与线性相关定义:设向量组 α 1 , α 2 , . . . , α s , 若存在不全为零的数 k 1 , k 2 , . . . , k s 使得 k 1 α 1 + k 2 α 2 + . . . + k s α s = 0 则称 α 1 , α 2 , . . . , α s 线性相关,否则称线性无关(线性无关当且仅当 k 1 , k 2 , . . . , k s = 0 ,使得 k 1 α 1 + k 2 α 2 + . . . + k s α s = 0 (仅有零解)) ( 无关充分条件: ∣ A ∣ ≠ 0 → r ( A 向量组 ) 满秩 = s ) 线性无关与线性相关定义:设向量组\alpha_1,\alpha_2,...,\alpha_s,若存在不全为零的数k_1,k_2,...,k_s使得k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s=0\\则称\alpha_1,\alpha_2,...,\alpha_s线性相关,否则称线性无关(线性无关当且仅当k_1,k_2,...,k_s=0,使得k_1\alpha_1+k_2\alpha_2+...+k_s\alpha_s=0(仅有零解))(无关充分条件:|A|\ne 0 \to r(A_{向量组})满秩=s) 线性无关与线性相关定义:设向量组α1,α2,...,αs,若存在不全为零的数k1,k2,...,ks使得k1α1+k2α2+...+ksαs=0则称α1,α2,...,αs线性相关,否则称线性无关(线性无关当且仅当k1,k2,...,ks=0,使得k1α1+k2α2+...+ksαs=0(仅有零解))(无关充分条件:A=0r(A向量组)满秩=s)

【评注】 ( 1 ) 向量 α 线性相关 ⇔ α = 0 ;向量组 α 1 , α 2 线性相关 ⇔ α 1 , α 2 对应分量成比例 [ 数一 ] ( 2 ) 两个向量线性相关共线,三个向量线性相关共面 【评注】(1)向量\alpha线性相关 \Leftrightarrow \alpha = 0;向量组\alpha_1,\alpha_2 线性相关\Leftrightarrow \alpha_1,\alpha_2 对应分量成比例 \\ [数一](2)两个向量线性相关共线,三个向量线性相关共面 【评注】(1)向量α线性相关α=0;向量组α1,α2线性相关α1,α2对应分量成比例[数一](2)两个向量线性相关共线,三个向量线性相关共面

线性相关的 充要 条件 线性相关的\green{充要}条件 线性相关的充要条件
向量组 α 1 , α 2 , . . . , α s 线性相关 ⇔ 至少有一个向量可以由其余向量组线性表示(非零解存在,不妨设 k 1 ≠ 0 , 则 α 1 = − 1 k 1 ( k 2 α 2 + . . . + k s α s ) ) ⇔ 齐次方程组 ( α 1 α 2 … α s ) ( x 1 x 2 ⋮ x s ) = 0 有非零解(矩阵乘法形式,本质为方程 α 1 x 1 + α 2 x 2 + ⋯ + α s x s = 0 ( 定义 ) 有 x i 非零解) ⇔ r ( α 1 , α 2 , . . . , α s ) < s   ( 充分: ∣ A ∣ = 0 )   向量组\alpha_1,\alpha_2,...,\alpha_s线性相关 \\ \Leftrightarrow{至少有一个向量可以由其余向量组线性表示(非零解存在,不妨设k_1\ne 0,则\alpha_1=-\frac{1}{k_1}(k_2\alpha_2+...+k_s\alpha_s))} \\ \Leftrightarrow齐次方程组\begin{pmatrix}\alpha_1&\alpha_2&\dots&\alpha_s\end{pmatrix}\begin{pmatrix}x_1 \\x_2 \\ \vdots\\x_s \end{pmatrix}=0有非零解(矩阵乘法形式,本质为方程\alpha_1 x_1+\alpha_2 x_2+\dots+\alpha_s x_s=0(定义)有x_i非零解)\\ \Leftrightarrow r(\alpha_1,\alpha_2,...,\alpha_s)<s~\quad(充分:|A|=0)\\~ 向量组α1,α2,...,αs线性相关至少有一个向量可以由其余向量组线性表示(非零解存在,不妨设k1=0,α1=k11(k2α2+...+ksαs)齐次方程组(α1α2αs) x1x2xs =0有非零解(矩阵乘法形式,本质为方程α1x1+α2x2++αsxs=0(定义)xi非零解)r(α1,α2,...,αs)<s (充分:A=0) 
推论: n 个 n 维向量 α 1 , α 2 , . . . , α n 线性相关 ⇔ ∣ α 1 , α 2 , . . . , α n ∣ = 0   推论:\blue{n个n维向量}\alpha_1,\alpha_2,...,\alpha_n\blue{线性相关}\Leftrightarrow\blue{ |\alpha_1,\alpha_2,...,\alpha_n|= 0}\\~ 推论:nn维向量α1,α2,...,αn线性相关α1,α2,...,αn=0 

线性相关的充分条件 ( 单向成立 ⇒ ) (线性相关的向量组:增加向量个数或减少原向量维数仍线性相关) ( 1 ) 含有零向量的向量组的线性相关 ( 2 ) 部分相关 , 则整体相关 ( 3 ) 高维相关 , 则低维相关 ( 4 ) 设向量组 α 1 , α 2 , . . . , α s 可由 β 1 , β 2 , . . . , β t 线性表示 , 且 s > t , 则 α 1 , α 2 , . . . , α s 线性相关 , 即 以少表多,多必相关   线性相关的充分条件(单向成立\Rightarrow)(线性相关的向量组:增加向量个数或减少原向量维数仍线性相关)\\(1)含有零向量的向量组的线性相关 \\(2)部分相关,则整体相关 \\(3) 高维相关,则低维相关 \\(4)设向量组 \alpha_1,\alpha_2,...,\alpha_s可由 \beta_1,\beta_2,...,\beta_t线性表示,且s>t,则 \alpha_1,\alpha_2,...,\alpha_s线性相关,即\green{以少表多,多必相关} \\~ 线性相关的充分条件(单向成立)(线性相关的向量组:增加向量个数或减少原向量维数仍线性相关)(1)含有零向量的向量组的线性相关(2)部分相关,则整体相关(3)高维相关,则低维相关(4)设向量组α1,α2,...,αs可由β1,β2,...,βt线性表示,s>t,α1,α2,...,αs线性相关,以少表多,多必相关 

逆否命题:设向量组 α 1 , α 2 , . . . , α s 线性无关,可由向量组 β 1 , β 2 , . . . , β t 线性表示,且 s ⩽ t , [ 无关被表 , 个数不多 ] 逆否命题:设向量组\alpha_1,\alpha_2,...,\alpha_s线性无关,可由向量组 \beta_1,\beta_2,...,\beta_t线性表示,且s\leqslant t,[无关被表,个数不多] 逆否命题:设向量组α1,α2,...,αs线性无关,可由向量组β1,β2,...,βt线性表示,且st[无关被表,个数不多]

推论: n + 1 个 n 维向量 ( 向量维数 < 向量个数 ) 线性相关 ( 方程维数 < 未知数个数 ) 推论:\blue{n+1个n维向量}(向量维数<向量个数)\blue{线性相关}(方程维数<未知数个数) 推论:n+1n维向量(向量维数<向量个数)线性相关(方程维数<未知数个数)

线性无关的 充要 条件 线性无关的\green{充要}条件 线性无关的充要条件
向量组 α 1 , α 2 , . . . , α s 线性无关 ⇔ 任意向量均不能由其余向量组表示 ⇔ 齐次方程组 ( α 1 α 2 … α s ) ( x 1 x 2 ⋮ x s ) = 0 只有零解 (矩阵乘法形式,本质为方程 α 1 x 1 + α 2 x 2 + ⋯ + α s x s = 0 ( 定义 ) 仅有零解: x i = 0 ) ⇔ r ( α 1 , α 2 , . . . , α s ) = s [ 充分:即 ∣ A ∣ ≠ 0 即可逆 ] ( 线性相关 r < s ) 向量组\alpha_1,\alpha_2,...,\alpha_s线性无关 \\ \Leftrightarrow 任意向量均不能由其余向量组表示 \\ \Leftrightarrow齐次方程组\begin{pmatrix}\alpha_1&\alpha_2&\dots&\alpha_s\end{pmatrix}\begin{pmatrix}x_1 \\x_2 \\ \vdots\\x_s \end{pmatrix}=0只有零解\quad(矩阵乘法形式,本质为方程\alpha_1 x_1+\alpha_2 x_2+\dots+\alpha_s x_s=0(定义)仅有零解:x_i=0)\\ \Leftrightarrow r(\alpha_1,\alpha_2,...,\alpha_s)=s[充分:即|A|\ne0即可逆]\quad(线性相关r<s) 向量组α1,α2,...,αs线性无关任意向量均不能由其余向量组表示齐次方程组(α1α2αs) x1x2xs =0只有零解(矩阵乘法形式,本质为方程α1x1+α2x2++αsxs=0(定义)仅有零解:xi=0r(α1,α2,...,αs)=s[充分:即A=0即可逆](线性相关r<s)

推论: n 个 n 维向量 α 1 , α 2 , . . . , α n 线性无关 ⇔ ∣ α 1 , α 2 , . . . , α n ∣ ≠ 0 推论:\blue{n个n维向量}\alpha_1,\alpha_2,...,\alpha_n\blue{线性无关}\Leftrightarrow\blue{ |\alpha_1,\alpha_2,...,\alpha_n|\ne 0} 推论:nn维向量α1,α2,...,αn线性无关α1,α2,...,αn=0

线性无关的充分条件(线性无关的向量组:减少向量个数或增加原向量维数仍线性无关) ( 1 ) 整体无关 , 则部分无关 ( 2 ) 低维无关,则高维无关 ( 3 ) 不含零向量的正交向量组线性无关 ( 互相垂直不成比例 ) ( 4 ) 不同特征值的特征向量线性无关 线性无关的充分条件(线性无关的向量组:减少向量个数或增加原向量维数仍线性无关)\\(1)整体无关,则部分无关 \\(2)低维无关,则高维无关 \\(3)不含零向量的正交向量组线性无关 (互相垂直不成比例)\\(4)不同特征值的特征向量线性无关 线性无关的充分条件(线性无关的向量组:减少向量个数或增加原向量维数仍线性无关)(1)整体无关,则部分无关(2)低维无关,则高维无关(3)不含零向量的正交向量组线性无关(互相垂直不成比例)(4)不同特征值的特征向量线性无关

( 必要:任意两个向量线性无关, ( 可能组合线性相关如 α 1 − ( α 2 + α 3 ) = 0 , 即 α 1 = λ ( α 2 + α 3 ) ) ) (必要:任意两个向量线性无关,(可能组合线性相关如\alpha_1-({\alpha_2+\alpha_3})=0,即\alpha_1=\lambda ({\alpha_2+\alpha_3}))) (必要:任意两个向量线性无关,(可能组合线性相关如α1(α2+α3)=0,α1=λ(α2+α3)))

极大无关组与向量组的秩

极大无关组定义:设向量组 α 1 , α 2 , . . . , α s 中存在 r 个向量 α 1 , α 2 , . . . α r 线性无关 , 再加入其余任意向量就线性相关 ( 其余向量均可由其 ( 极大无关组 ) 线性表示 ) , 则称 α 1 , α 2 , . . . α r 为向量组 α 1 , α 2 , . . . , α s 的、极大无关组   极大无关组定义:设向量组\alpha_1,\alpha_2,...,\alpha_s中存在r个向量\alpha_1,\alpha_2,...\alpha_r线性无关,\\再加入其余任意向量就线性相关(其余向量均可由其(极大无关组)线性表示),则称\alpha_1,\alpha_2,...\alpha_r为向量组\alpha_1,\alpha_2,...,\alpha_s的、极大无关组\\~ 极大无关组定义:设向量组α1,α2,...,αs中存在r个向量α1,α2,...αr线性无关,再加入其余任意向量就线性相关(其余向量均可由其(极大无关组)线性表示),则称α1,α2,...αr为向量组α1,α2,...,αs的、极大无关组 
向量组秩的定义 : 极大无关组中向量的个数称为向量组的秩   向量组秩的定义:极大无关组中向量的个数称为向量组的秩\\~ 向量组秩的定义:极大无关组中向量的个数称为向量组的秩 
【评注】: ( 1 ) 极大无关组不唯一 , 若向量组的秩为 r ,则任意个线性无关的向量均为极大无关组 ( 2 ) 矩阵的秩等于极大无关组列向量的秩,也等于其行向量的秩   【评注】:(1)极大无关组不唯一,若向量组的秩为r,则任意个线性无关的向量均为极大无关组\\(2)矩阵的秩等于极大无关组列向量的秩,也等于其行向量的秩 \\~ 【评注】:(1)极大无关组不唯一,若向量组的秩为r,则任意个线性无关的向量均为极大无关组(2)矩阵的秩等于极大无关组列向量的秩,也等于其行向量的秩 

极大无关组求法:化为行阶梯型矩阵,则行阶梯形矩阵中每行第一个非零元素对应的列向量构成极大线性无关组 极大无关组求法:化为行阶梯型矩阵,则行阶梯形矩阵中每行第一个非零元素对应的列向量构成极大线性无关组 极大无关组求法:化为行阶梯型矩阵,则行阶梯形矩阵中每行第一个非零元素对应的列向量构成极大线性无关组

【综合大题】 【综合大题】 【综合大题】


线性方程组

解的性质与判定

齐次线性方程组的定义   齐次线性方程组的定义\\~ 齐次线性方程组的定义 
非齐次 b 1 . . . b n , 不全为零   非齐次b_1...b_n,不全为零\\~ 非齐次b1...bn,不全为零 
解的定义   解的定义\\~ 解的定义 
主变量与自由变量的定义:对系数矩阵 A 做初等变换 , 所得 行阶梯形矩阵 中每行的第一个非零元素对应的未知数称为主变量 ( 因变量 y ) , 其余未知数称为自由变量 ( 自变量 x )   主变量与自由变量的定义:对系数矩阵A做初等变换,所得\blue{行阶梯形矩阵}中每行的第一个非零元素对应的未知数称为主变量(因变量y),其余未知数称为自由变量(自变量x)\\~ 主变量与自由变量的定义:对系数矩阵A做初等变换,所得行阶梯形矩阵中每行的第一个非零元素对应的未知数称为主变量(因变量y),其余未知数称为自由变量(自变量x) 
解的性质 ( 线性组合 ) : ( 1 ) 若 ξ 1 , ξ 2 为 A x = 0 的解 , 则 k 1 ξ 1 + k 2 ξ 2 为 A x = 0 的解 ( 2 ) 若 η 1 , η 2 为 A x = b 的解 , 则 η 1 − η 2 为 A x = 0 的解 ( 3 ) 若 ξ 为 A x = 0 的解 , η 为 A x = b 的解,则 ξ + η 为 A x = b 的解   解的性质(线性组合):\\(1) 若\xi_1,\xi_2为Ax=0的解,则k_1\xi_1+k_2\xi_2为Ax=0的解 \\(2) 若\eta_1,\eta_2 为Ax=b的解,则 \eta_1-\eta_2为Ax=0的解 \\(3) 若\xi为Ax=0的解, \eta为Ax=b的解,则\xi+\eta为Ax=b的解 \\~ 解的性质(线性组合)(1)ξ1,ξ2Ax=0的解,k1ξ1+k2ξ2Ax=0的解(2)η1,η2Ax=b的解,η1η2Ax=0的解(3)ξAx=0的解,ηAx=b的解,则ξ+ηAx=b的解 
【解的性质的推广】 ( 1 ) 若 η 1 , η 2 , . . . , η s 为 A x = b 的解,则 k 1 η 1 + k 2 η 2 + . . . + k s η s 为 { A x = 0 的解 ⇔ ∑ i = 1 s k i = 0 ( 相当于 b 正负抵消为零 ) A x = b 的解 ⇔ ∑ i = 1 s k i = 1 ( 相当于留下一个 b ) ( 2 ) 若 η 1 , η 2 , . . . , η s 为 A x = b 的 线性无关 的解 , 则 η 1 − η 2 , η 3 − η 1 , . . . η s − η 1 为 A x = 0 的 s − 1 个线性无关的解 ( 变型: η 1 − η i , η 2 − η i , . . . , η s − η i 或 η 2 − η 1 , . . . , η s − η s − 1 或 η 1 − η 2 , . . . , η s − 1 − η s − 2 都是线性无关的解 )   【解的性质的推广】\\(1) 若\eta_1,\eta_2,...,\eta_s为Ax=b的解,则k_1\eta_1+k_2\eta_2+...+k_s\eta_s为\begin{cases} Ax=0的解 \Leftrightarrow \sum\limits_{i=1}^{s}k_i=0 (相当于b正负抵消为零) \\Ax=b的解 \Leftrightarrow \sum\limits_{i=1}^{s}k_i=1 (相当于留下一个b) \end{cases} \\(2)若\eta_1,\eta_2,...,\eta_s为Ax=b的\green{线性无关}的解,则\eta_1-\eta_2,\eta_3-\eta_1,...\eta_s-\eta_1为Ax=0的\green{s-1}个线性无关的解\\(变型:\eta_1-\eta_i,\eta_2-\eta_i,...,\eta_s-\eta_i 或 \eta_2-\eta_1,...,\eta_s-\eta_{s-1}或\eta_1-\eta_2,...,\eta_{s-1}-\eta_{s-2}都是线性无关的解)\\~ 【解的性质的推广】(1)η1,η2,...,ηsAx=b的解,则k1η1+k2η2+...+ksηs Ax=0的解i=1ski=0(相当于b正负抵消为零)Ax=b的解i=1ski=1(相当于留下一个b)(2)η1,η2,...,ηsAx=b线性无关的解,η1η2,η3η1,...ηsη1Ax=0s1个线性无关的解(变型:η1ηi,η2ηi,...,ηsηiη2η1,...,ηsηs1η1η2,...,ηs1ηs2都是线性无关的解) 

齐次方程组解的判定: A m × n x = 0 只有零解 ⇔ r ( A ) = n A x = 0 有非零解 ( 有自由变量 , 有无穷多解 ) ⇔ r ( A ) < n ( 则 ∣ A ∣ = 0 ) 推论  A x = 0 有非零解的充分条件为 m < n ( A m × n 行 < 列 ⇔ 方程个数 < 未知数个数 )   齐次方程组解的判定:\\A_{m\times n}x=0只有零解 \Leftrightarrow r(A)=n \\ Ax=0有非零解(有自由变量,有无穷多解) \Leftrightarrow r(A)<n\quad(则|A|=0) \\推论~Ax=0有非零解的充分条件为m < n (A_{m\times n}行<列 \Leftrightarrow方程个数<未知数个数)\\~ 齐次方程组解的判定:Am×nx=0只有零解r(A)=nAx=0有非零解(有自由变量,有无穷多解)r(A)<n(A=0)推论 Ax=0有非零解的充分条件为m<n(Am×n<方程个数<未知数个数) 

非齐次方程组解的判定: A m × n x = b 无解 ⇔ r ( A ) < r ( A ∣ b ) ⇔ r ( A ) = r ( A ∣ b ) − 1   ( 极大无关组仅多 b 这一列 − 无法由其余线性表示 ) A x = b 有唯一解 ⇔ r ( A ) = r ( A ∣ b ) = n A x = b 有无穷多解 ⇔ r ( A ) = r ( A ∣ b ) < n   推论( 1 ) A x = b 有解 ⇔ r ( A ) = r ( A ∣ b ) ( 2 ) A x = b 有解的充分条件为 r ( A ) = m 【评注】:( 1 )若 A x = b 有唯一解 , 则 A x = 0 只有零解;若 A x = b 有无穷多解,则 A x = 0 有非零解 ( 2 )若 A 为 n 阶矩阵,则线性方程组解的判断或求解可以用克拉默法则(行列式)   非齐次方程组解的判定:\\A_{m\times n}x=b无解 \Leftrightarrow r(A)<r(A|b)\Leftrightarrow r(A)=r(A|b)-1~(极大无关组仅多b这一列-无法由其余线性表示) \\Ax=b有唯一解 \Leftrightarrow r(A)=r(A|b)=n \\ Ax=b有无穷多解 \Leftrightarrow r(A)=r(A|b)<n \\~\\推论(1)Ax=b有解\Leftrightarrow r(A)=r(A|b) \\(2) Ax=b有解的充分条件为r(A)=m \\【评注】:(1)若Ax=b有唯一解,则Ax=0只有零解;若Ax=b有无穷多解,则Ax=0有非零解 \\(2)若A为n阶矩阵,则线性方程组解的判断或求解可以用克拉默法则(行列式) \\~ 非齐次方程组解的判定:Am×nx=b无解r(A)<r(Ab)r(A)=r(Ab)1 (极大无关组仅多b这一列无法由其余线性表示)Ax=b有唯一解r(A)=r(Ab)=nAx=b有无穷多解r(A)=r(Ab)<n 推论(1Ax=b有解r(A)=r(Ab)2Ax=b有解的充分条件为r(A)=m【评注】:(1)若Ax=b有唯一解,Ax=0只有零解;若Ax=b有无穷多解,则Ax=0有非零解2)若An阶矩阵,则线性方程组解的判断或求解可以用克拉默法则(行列式) 

齐次线性方程组

基础解系的定义:设 A 为 m × n 阶矩阵 , ξ 1 , ξ 2 , . . . , ξ s 为线性方程组 A x = 0 的解 , 若 ξ 1 , ξ 2 , . . . , ξ s 线性无关,且 A x = 0 的任意解均可由 ξ 1 , ξ 2 , . . . , ξ s 线性表示 , 则称 ξ 1 , ξ 2 , . . . , ξ s 为 A x = 0 的基础解系 .   基础解系的定义:设A为m\times n阶矩阵,\xi_1,\xi_2,...,\xi_s为线性方程组Ax=0的解,若\xi_1,\xi_2,...,\xi_s线性无关,且Ax=0的任意解均可由\xi_1,\xi_2,...,\xi_s线性表示,则称\xi_1,\xi_2,...,\xi_s为Ax=0的基础解系.\\~ 基础解系的定义:设Am×n阶矩阵,ξ1,ξ2,...,ξs为线性方程组Ax=0的解,ξ1,ξ2,...,ξs线性无关,且Ax=0的任意解均可由ξ1,ξ2,...,ξs线性表示,则称ξ1,ξ2,...,ξsAx=0的基础解系. 
基础解系即 A x = 0 解的 极大线性无关组 , 基础解系不唯一,但基础解系中解的个数 n − r ( A ) ( n 为系数矩阵列数 ) [ 未知数个数 − 主变量个数 = 自由变量的个数 ] 唯一,任意 n − r ( A ) 个线性无关的解均为基础解系   基础解系即Ax=0解的 \blue{极大线性无关组},\\基础解系不唯一,但基础解系中解的个数\blue{n-r(A)}(n为系数矩阵列数) \\ [未知数个数-主变量个数=\blue{自由变量的个数}]唯一,任意n-r(A)个线性无关的解均为基础解系 \\~ 基础解系即Ax=0解的极大线性无关组基础解系不唯一,但基础解系中解的个数nr(A)(n为系数矩阵列数)[未知数个数主变量个数=自由变量的个数]唯一,任意nr(A)个线性无关的解均为基础解系 

【基础解系的求法】 ( 1 ) A 为数字矩阵:对 A 作初等行变换,化为行最简型矩阵 , 自由变量分别取 1 , 0 , 0 …   ; 0 , 1 , 0 …   ; 0 , 0 , 1 … 解得主变量, 得到基础解系 ( 有几个自由变量就有几个基础解系 ) (注意 A x = b 时就不用 b 列 , b 列看做 0 , A x = 0 ) ( 2 ) A 为抽象矩阵:先求 r ( A ) , 再利用解的定义或性质凑 n − r ( A ) 个线性无关的基础解系   【基础解系的求法】\\(1)A为数字矩阵:对A作初等行变换,化为行最简型矩阵,自由变量分别取1,0,0\dots;0,1,0\dots;0,0,1\dots解得主变量,\\得到基础解系(有几个自由变量就有几个基础解系)(注意Ax=b时就不用b列,b列看做0,Ax=0) \\(2)A为抽象矩阵:先求r(A),再利用解的定义或性质凑n-r(A)个线性无关的基础解系 \\~ 【基础解系的求法】1A为数字矩阵:对A作初等行变换,化为行最简型矩阵,自由变量分别取1,0,0;0,1,0;0,0,1解得主变量,得到基础解系(有几个自由变量就有几个基础解系)(注意Ax=b时就不用b,b列看做0Ax=02A为抽象矩阵:先求r(A),再利用解的定义或性质凑nr(A)个线性无关的基础解系 

齐次线性方程组的通解 设 A 为 m × n 阶矩阵, r ( A ) = r , ξ 1 , ξ 2 , . . . , ξ n − r 为线性方程组 A x = 0 的基础解系 , η 为非齐次线性方程组 A x = b 的特解 , 则 A x = 0 的通解为 k 1 ξ 1 + k 2 ξ 2 + . . . + k n − r ξ n − r , 其中 k 1 , k 2 , . . . , k n − r 为任意常数   齐次线性方程组的通解\\ 设A为m\times n阶矩阵,r(A)=r,\xi_1,\xi_2,...,\xi_{n-r}为线性方程组Ax=0的基础解系,\eta为非齐次线性方程组Ax=b的特解,则Ax=0的通解为k_1\xi_1+k_2\xi_2+...+k_{n-r}\xi_{n-r},其中k_1,k_2,...,k_{n-r}为任意常数 \\~ 齐次线性方程组的通解Am×n阶矩阵,r(A)=r,ξ1,ξ2,...,ξnr为线性方程组Ax=0的基础解系,η为非齐次线性方程组Ax=b的特解,Ax=0的通解为k1ξ1+k2ξ2+...+knrξnr,其中k1,k2,...,knr为任意常数 

非齐次线性方程组

非齐次线性方程组的通解 设 A 为 m × n 阶矩阵 , r ( A ) = r ( A ∣ b ) < 为齐次线性方程组 A x = 0 的基础解系, η 为非齐次线性方程组的特解,则 A x = b 的通解为 k 1 ξ 1 + k 2 ξ 2 + . . . + k n − r ξ n − r + η , 其中 k 1 , k 2 , . . . , k n − r 为任意常数   非齐次线性方程组的通解\\设A为m\times n阶矩阵,r(A)=r(A|b)<为齐次线性方程组Ax=0的基础解系,\eta为非齐次线性方程组的特解,则Ax=b的通解为k_1\xi_1+k_2\xi_2+...+k_{n-r}\xi_{n-r}+\eta,\quad其中k_1,k_2,...,k_{n-r}为任意常数\\~ 非齐次线性方程组的通解Am×n阶矩阵,r(A)=r(Ab)<为齐次线性方程组Ax=0的基础解系,η为非齐次线性方程组的特解,则Ax=b的通解为k1ξ1+k2ξ2+...+knrξnr+η,其中k1,k2,...,knr为任意常数 

特解的求法 : ( 1 ) ( A ∣ b ) 为数字矩阵,对 ( A ∣ b ) 进行初等行变换,化为行最简型矩阵 , 自由变量均取零,解得主变量,得到特解 ( 2 ) ( A ∣ b ) 为抽象矩阵:利用解的定义或性质凑一个特解  ( 如设 A x = b 的线性无关的解构成的向量组的系数和为 1 )   特解的求法:\\(1)(A|b)为数字矩阵,对(A|b)进行初等行变换,化为行最简型矩阵,自由变量均取零,解得主变量,得到特解\\(2)(A|b) 为抽象矩阵:利用解的定义或性质凑一个特解~(如设Ax=b的线性无关的解构成的向量组的系数和为1) \\~ 特解的求法:1(Ab)为数字矩阵,对(Ab)进行初等行变换,化为行最简型矩阵,自由变量均取零,解得主变量,得到特解2(Ab)为抽象矩阵:利用解的定义或性质凑一个特解 (如设Ax=b的线性无关的解构成的向量组的系数和为1) 

公共解

公共解的定义:若 α 既为线性方程组 ( 1 ) 的解,又是线性方程组 ( 2 ) 的解,则称 α 为 ( 1 ) 与 ( 2 ) 的公共解   公共解的定义:若\alpha既为线性方程组(1)的解,又是线性方程组(2)的解,则称\alpha为(1)与(2)的公共解\\~ 公共解的定义:若α既为线性方程组(1)的解,又是线性方程组(2)的解,则称α(1)(2)的公共解 
【公共解的求法】: ( 1 ) 已知线性方程组①与②的具体形式,则联立方程组①与②,得到公共解(方程组解的情况即为公共解的情况) 【公共解的求法】:\\(1) 已知线性方程组①与②的具体形式,则联立方程组①与②,得到公共解(方程组解的情况即为公共解的情况) 【公共解的求法】:(1)已知线性方程组的具体形式,则联立方程组,得到公共解(方程组解的情况即为公共解的情况)
( 2 ) 已知线性方程组①的具体形式与线性方程组②的通解,则将方程组②的通解代入到方程组①,确定通解中的参数,得到公共解 (2)已知线性方程组①的具体形式与线性方程组②的通解,则将方程组②的通解代入到方程组①,确定通解中的参数,得到公共解 (2)已知线性方程组的具体形式与线性方程组的通解,则将方程组的通解代入到方程组,确定通解中的参数,得到公共解
( 3 ) 已知线性方程组①与②的通解,则令其相等,确定通解中的参数,得到公共解   (3)已知线性方程组①与②的通解 ,则令其相等,确定通解中的参数,得到公共解 \\~ (3)已知线性方程组的通解,则令其相等,确定通解中的参数,得到公共解 

同解

同解的定义:若线性方程组①的解均为线性方程组②的解,反之也成立,则称线性方程组①与②同解   同解的定义:若线性方程组①的解均为线性方程组②的解,反之也成立,则称线性方程组①与②同解\\~ 同解的定义:若线性方程组的解均为线性方程组的解,反之也成立,则称线性方程组同解 
同解的充要条件 设 A 为 m × n 阶矩阵, B 为 l × n 阶矩阵,线性方程组 A x = 0 与 B x = 0 同解 ⇔ A , B 行向量组等价 ⇔ r ( A ) = r ( A B ) = r ( B )    [ 三秩相等,方程组同解 ]   同解的充要条件 \\设A为m\times n阶矩阵,B为 l\times n阶矩阵,线性方程组Ax=0与Bx=0同解 \\ \Leftrightarrow A,B行向量组等价 \\ \Leftrightarrow r(A)=r\begin{pmatrix}A\\B \end{pmatrix} =r(B)~~[三秩相等,方程组同解]\\~ 同解的充要条件Am×n阶矩阵,Bl×n阶矩阵,线性方程组Ax=0Bx=0同解A,B行向量组等价r(A)=r(AB)=r(B)  [三秩相等,方程组同解] 

特征值与特征向量

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

violet~evergarden

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值