线性代数【基础2】

特征值与特征向量-最难

第五章之后均方阵 \large\red{第五章之后均方阵} 第五章之后均方阵

特征值与特征向量的概念

特征值与特征向量的定义:设 A 为 n 阶矩阵,若存在数 λ 与 n 维非零向量 α ,使得 A α = λ α   ( α ≠ 0 ) , 则称 α 为矩阵 A 属于特征值 λ 的特征向量   特征值与特征向量的定义:设A为n阶矩阵,若存在数\lambda与n维非零向量\alpha,使得A\alpha=\lambda\alpha~(\alpha\ne 0),则称\alpha为矩阵A属于特征值\lambda的特征向量 \\~ 特征值与特征向量的定义:设An阶矩阵,若存在数λn维非零向量α,使得Aα=λα (α=0),则称α为矩阵A属于特征值λ的特征向量 

【评注】 ( 想到第二章同时想到第五章 ) ( 1 )设 A 为 n 阶矩阵, α 为线性方程组 A x = 0 的非零解,则 α 为矩阵 A 属于特征值 λ 的特征向量 ( 2 )设 n 阶矩阵 A 的各行元素值之和均为 λ , 则 ( 1 , 1 , . . . , 1 ) T 为矩阵属于特征值 λ 的特征向量   【评注】(想到第二章同时想到第五章)(1)设A为n阶矩阵,\alpha为线性方程组Ax=0的非零解,则\alpha为矩阵A属于特征值\lambda的特征向量 \\(2)设n阶矩阵A的各行元素值之和均为\lambda,则(1,1,...,1)^T为矩阵属于特征值\lambda的特征向量 \\~ 【评注】(想到第二章同时想到第五章)1)设An阶矩阵,α为线性方程组Ax=0的非零解,则α为矩阵A属于特征值λ的特征向量2)设n阶矩阵A的各行元素值之和均为λ,(1,1,...,1)T为矩阵属于特征值λ的特征向量 
p r ( 1 ) : A α = 0 ⋅ α   ( α ≠ 0 ) , p r ( 2 ) : A ( 1 ⋮ 1 ) = ( α 11 α 12 . . . α 1 n α 21 α 22 . . . α 2 n ⋮ ⋱ ⋮ α n 1 α n 2 . . . α n n ) ( 1 ⋮ 1 ) = ( λ ⋮ λ ) = λ ( 1 ⋮ 1 )   pr(1):A\alpha=0\cdot \alpha~(\alpha\ne 0),\quad pr(2):A\begin{pmatrix}1\\\vdots \\ 1\end{pmatrix}=\begin{pmatrix} \alpha_{11} &\alpha_{12}&...&\alpha_{1n} \\ \alpha_{21}& \alpha_{22}&...&\alpha_{2n}& \\ \vdots&&\ddots&\vdots \\ \alpha_{n1}&\alpha_{n2}&...&\alpha_{nn} \end{pmatrix}\begin{pmatrix}1\\ \vdots \\ 1\end{pmatrix}=\begin{pmatrix}\lambda\\\vdots \\ \lambda\end{pmatrix}=\lambda\begin{pmatrix}1\\\vdots \\ 1\end{pmatrix}\\~ pr(1):Aα=0α (α=0),pr(2):A 11 = α11α21αn1α12α22αn2.........α1nα2nαnn 11 = λλ =λ 11  

特征多项式与特征方程的定义:设 A 为 n 阶矩阵,称 ∣ A − λ E ∣ = ∣ α 11 − λ α 12 . . . α 1 n α 21 α 22 − λ . . . α 2 n ⋮ ⋮ ⋱ ⋮ α n 1 α n 2 . . . α n n − λ ∣   为 A 的特征多项式(特征值 λ 的 n 次多项式) , 称 ∣ λ E − A ∣ = 0 为 A 的特征方程(特征值 λ 的 n 次方程) (注意 ∣ A − λ E ∣ = 0 是相同的, ∣ A − λ E ∣ = ( − 1 ) n ∣ λ E − A ∣ 等于零系数可约掉 = ∣ λ E − A ∣ = 0 )   特征多项式与特征方程的定义 :设A为n阶矩阵,称|A-\lambda E|=\begin{vmatrix} \alpha_{11}-\lambda &\alpha_{12}&...&\alpha_{1n} \\ \alpha_{21}& \alpha_{22}-\lambda&...&\alpha_{2n}& \\ \vdots&\vdots &\ddots&\vdots \\ \alpha_{n1}&\alpha_{n2}&...&\alpha_{nn} -\lambda\end{vmatrix} \\~\\ 为A的特征多项式(特征值\lambda的n次多项式),称\green{|\lambda E-A|=0}为A的特征方程(特征值\lambda的n次方程)\\(注意|A-\lambda E|=0是相同的,|A-\lambda E|=(-1)^n|\lambda E-A|等于零系数可约掉=|\lambda E-A|=0) \\~ 特征多项式与特征方程的定义:设An阶矩阵,称AλE= α11λα21αn1α12α22λαn2.........α1nα2nαnnλ  A的特征多项式(特征值λn次多项式),λEA=0A的特征方程(特征值λn次方程)(注意AλE=0是相同的,AλE=(1)nλEA等于零系数可约掉=λEA=0 

特征方程法 ( 1 )解特征方程 ∣ A − λ E ∣ = 0 ,得到的 n 个特征值 λ 1 , λ 2 , . . . , λ n ( 2 )解方程组 ( A − λ i E ) x = 0 ( i = 1 , 2 , . . . , n ) ,得到基础解系,即特征值 λ i 的 n − r ( A − λ i E ) 个线性无关的特征向量   特征方程法 \\ (1)解特征方程|A-\lambda E|=0,得到的n个特征值 \lambda_1,\lambda_2,...,\lambda_n \\(2)解方程组(A-\lambda_iE)x=0(i=1,2,...,n),得到基础解系,即特征值\lambda_i的n-r(A-\lambda_iE)个线性无关的特征向量 \\~ 特征方程法1)解特征方程AλE=0,得到的n个特征值λ1,λ2,...,λn2)解方程组(AλiE)x=0(i=1,2,...,n),得到基础解系,即特征值λinr(AλiE)个线性无关的特征向量 
p r : A α = λ α   ( α ≠ 0 ) ⇔ ( A − λ E ) α = 0 即 α 为方程组 ( A − λ E ) x = 0 的非零解 ⇒ r ( A − λ E ) < n ⇔ ∣ A − λ E ∣ = 0   pr:A\alpha=\lambda\alpha~(\alpha\ne 0) \Leftrightarrow(A-\lambda E)\alpha=0 即\alpha为方程组(A-\lambda E)x=0的非零解 \Rightarrow r(A-\lambda E)<n \Leftrightarrow |A-\lambda E|=0 \\~ pr:Aα=λα (α=0)(AλE)α=0α为方程组(AλE)x=0的非零解r(AλE)<nAλE=0 
【评注】 ( 1 )上(下)三角矩阵、主对角矩阵的特征值为 主对角元素 ( 2 )设 A 为 n 阶矩阵,若 a A + b E ( α ≠ 0 ) 不可逆 , 即 ∣ a A + b E ∣ = 0 ,则 λ = − b a 为 A 的特征值   【评注】\\(1) 上(下)三角矩阵、主对角矩阵的特征值为\green{主对角元素} \\(2)设A为n阶矩阵,若aA+bE(\alpha \ne 0) 不可逆,即|\blue{a}A+\blue{b}E|=0,则\blue{\lambda=-\frac{b}{a}}为A的特征值 \\~ 【评注】1)上(下)三角矩阵、主对角矩阵的特征值为主对角元素2)设An阶矩阵,若aA+bE(α=0)不可逆,aA+bE=0,则λ=abA的特征值 
特征值与特征向量的性质 ( 1 )不同特征值的特征向量线性无关(给不同特征值:线性无关且相加不是特征值) ( 2 )不同特征值的特征向量之和不是特征向量 ( 3 ) k 重特征值 最多有 k 个 线性无关的特征向量 ( 4 )设 A 的特征值为 λ 1 , λ 2 , . . . , λ n , 则 ∑ i − 1 n λ i = ∑ i − 1 n a i i = t r ( A ) [ 证明不考, A 的迹:一个 n × n 矩阵 A 的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵 A 的迹 ] ( 5 )若 r ( A ) = 1 , 即 A = α T β = β T α , 其中 α , β 为 n 阶维非零列向量,则 A 的特征值为 λ 1 = t r ( A ) = α T β = β T α , λ 2 = . . . = λ n = 0 (证明不用,能三阶求解: [ 题目出现 r ( A ) = 1 ⇔ A = α β T ] , 可求特征值 λ : α 极大无关 , β T 系数倍数, λ 1 = t r ( A ) , 其余为 0 ) ( 6 )设 α 为矩阵 A 属于特征值 λ 的特征向量,则   特征值与特征向量的性质 \\(1)不同特征值的特征向量线性无关(给不同特征值:线性无关且相加不是特征值) \\(2)不同特征值的特征向量之和不是特征向量 \\(3) k重特征值\blue{最多有k个}线性无关的特征向量 \\(4) 设A的特征值为\lambda_1,\lambda_2, ...,\lambda_n,则\sum\limits_{i-1}^n \lambda_i=\sum\limits_{i-1}^n a_{ii}=tr(A)[证明不考,A的迹:一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹] \\(5)若r(A)=1,即A=\alpha^T\beta =\beta^T\alpha,其中\alpha,\beta为n阶维非零列向量,则A的特征值为\lambda_1=tr(A)=\alpha^T\beta =\beta^T\alpha,\lambda_2=...=\lambda_n=0 (证明不用,能三阶求解:[题目出现r(A)=1\Leftrightarrow A=\alpha\beta^T],可求特征值\lambda:\alpha极大无关,\beta^T 系数倍数,\lambda_1=tr(A),其余为0) \\(6)设\alpha 为矩阵A属于特征值\lambda的特征向量,则\\~ 特征值与特征向量的性质1)不同特征值的特征向量线性无关(给不同特征值:线性无关且相加不是特征值)2)不同特征值的特征向量之和不是特征向量3k重特征值最多有k线性无关的特征向量4)设A的特征值为λ1,λ2,...,λn,i1nλi=i1naii=tr(A)[证明不考,A的迹:一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹]5)若r(A)=1,A=αTβ=βTα,其中α,βn阶维非零列向量,则A的特征值为λ1=tr(A)=αTβ=βTα,λ2=...=λn=0(证明不用,能三阶求解:[题目出现r(A)=1A=αβT],可求特征值λ:α极大无关,βT系数倍数,λ1=tr(A),其余为06)设α为矩阵A属于特征值λ的特征向量,则 

A A A f ( A ) f(A) f(A) A − 1 A^{-1} A1 A ∗ A^* A A T A^T AT P − 1 A P P^{-1}AP P1AP
λ \lambda λ f ( λ ) f(\lambda) f(λ) 若 λ ≠ 0 则 1 λ ( 若 λ = 0 则性质不能用 ) 若\lambda\ne0则\frac{1}{\lambda}(若\lambda=0则性质不能用) λ=0λ1(λ=0则性质不能用) ∣ A ∣ λ (同理) ( ∣ A ∣ = 特征值乘积 ) \frac{|A|}{\lambda}(同理)(|A|=特征值乘积) λA(同理)(A=特征值乘积) λ \lambda λ λ \lambda λ
α \alpha α α \alpha α α \alpha α α \alpha α P − 1 α \blue{P^{-1}\alpha} P1α

p r : A − 1 α = 1 ∣ A ∣ A ∗ α = λ α ⇒ A ∗ α = ∣ A ∣ λ α pr:A^{-1}\alpha=\frac{1}{|A|}A^*\alpha=\lambda\alpha \Rightarrow A^*\alpha=\frac{|A|}{\lambda}\alpha pr:A1α=A1Aα=λαAα=λAα
【特征值与特征向量求法 − 后两章每道题都用特征】 ( 1 ) A 为数字矩阵:特征方程法 ( 2 ) A 为抽象矩阵:利用特征值与特征向量的定义或性质   【特征值与特征向量求法-后两章每道题都用特征】 \\(1)A为数字矩阵:特征方程法\\(2)A为抽象矩阵:利用特征值与特征向量的定义或性质 \\~ 【特征值与特征向量求法后两章每道题都用特征】1A为数字矩阵:特征方程法2A为抽象矩阵:利用特征值与特征向量的定义或性质 

相似矩阵

相似矩阵的定义:设 A , B 为 n 阶矩阵 , 若存在 n 阶可逆矩阵 P , 使得 B = P − 1 A P , 则称 A 与 B 相似,记作 A ∼ B   相似矩阵的定义:设A,B为n阶矩阵,若存在n阶可逆矩阵P,使得B=P^{-1}AP,则称A与B相似,记作A\sim B\\~ 相似矩阵的定义:设A,Bn阶矩阵,若存在n阶可逆矩阵P,使得B=P1AP,则称AB相似,记作AB 

相似矩阵的性质 ( 1 )若 A ∼ B ,则 A , B 有相同的行列式、秩、特征方程、特征值、迹 ( 2 )若 A ∼ B ,则 f ( A ) ∼ f ( B ) , A − 1 ∼ B − 1 , A B ∼ B A   ( ∣ A ∣ ≠ 0 ) , A T ∼ B T ( 3 ) ( 传递性 ) A ∼ B , B ∼ C , 则 A ∼ C   相似矩阵的性质 \\ (1)若A\sim B,则A,B有相同的行列式、秩、特征方程、特征值、迹\\ (2)若A\sim B,则f(A)\sim f(B),A^{-1}\sim B^{-1},AB\sim BA~(|A|\ne 0) ,A^T\sim B^T \\ (3) (传递性)A\sim B,B\sim C,则A\sim C \\~ 相似矩阵的性质1)若AB,则A,B有相同的行列式、秩、特征方程、特征值、迹2)若AB,则f(A)f(B),A1B1,ABBA (A=0),ATBT3(传递性)AB,BC,AC 

A ∼ Λ , P − 1 A P = Λ ( Λ 为对角矩阵,则 A 的特征向量即为 P ,特征值即为主对角元素)   A\sim\Lambda,P^{-1}AP=\Lambda(\Lambda为对角矩阵,则A的特征向量即为P,特征值即为主对角元素)\\~ AΛP1AP=ΛΛ为对角矩阵,则A的特征向量即为P,特征值即为主对角元素) 

相似对角化

相似对角化的定义:设 A 为 n 阶矩阵,若存在 n 阶可逆矩阵 P , 使得 P − 1 A P = Λ = ( λ 1 λ 2 ⋱ λ n ) , 则称 A 可相似对角化 进一步分析:由 P − 1 A P = Λ ,得 A P = P Λ , 将 P 按列分块,得 A P = A ( α 1 , α 2 , . . . , α n ) = ( A α 1 , A α 2 , . . . , A α n )   = ( α 1 , α 2 , . . . , α n ) ( λ 1 λ 2 ⋱ λ n ) = ( λ 1 α 1 , λ 2 α 2 , . . . , λ n α n ) 从而 A α i = λ i α i   ( α i ≠ 0 ) , i = 1 , 2 , . . . , n ,(本质)即 P 的第 i 列 α i 为矩阵 A 属于特征值 λ i 的特征向量 , 故 P 是由 A 的 n 个线性无关的特征向量构成的可逆矩阵 , Λ 是由 A 的 n 个特征值构成的对角矩阵   相似对角化的定义:设A为n阶矩阵,若存在n阶可逆矩阵P,使得 \\P^{-1}AP=\Lambda= \begin{pmatrix} \lambda_{1} && \\ &\lambda_2 && \\&&\ddots& \\&&&\lambda_{n}\\ \end{pmatrix},则称A可相似对角化\\进一步分析:由P^{-1}AP=\Lambda,得 AP=P\Lambda,将P 按列分块,得\\ AP=A(\alpha_1,\alpha_2,...,\alpha_n)=(A\alpha_1,A\alpha_2,...,A\alpha_n)\\~\\=(\alpha_1,\alpha_2,...,\alpha_n)\begin{pmatrix} \lambda_{1} && \\ &\lambda_2 && \\&&\ddots& \\&&&\lambda_{n}\\ \end{pmatrix}=(\lambda_1\alpha_1,\lambda_2\alpha_2,...,\lambda_n\alpha_n) \\从而A\alpha_i=\lambda_i\alpha_i~(\alpha_i\ne 0),i=1,2,...,n,(本质)即P的第i列\alpha_i为矩阵A属于特征值\lambda_i的特征向量, \\故P是由A的n个线性无关的特征向量构成的可逆矩阵, \Lambda是由A的n个特征值构成的对角矩阵 \\~ 相似对角化的定义:设An阶矩阵,若存在n阶可逆矩阵P,使得P1AP=Λ= λ1λ2λn ,则称A可相似对角化进一步分析:由P1AP=Λ,得AP=PΛ,P按列分块,得AP=A(α1,α2,...,αn)=(Aα1,Aα2,...,Aαn) =(α1,α2,...,αn) λ1λ2λn =(λ1α1,λ2α2,...,λnαn)从而Aαi=λiαi (αi=0),i=1,2,...,n,(本质)即P的第iαi为矩阵A属于特征值λi的特征向量,P是由An个线性无关的特征向量构成的可逆矩阵,Λ是由An个特征值构成的对角矩阵 
【评注】若 A , B 可相似对角化 , 则 A 与 B 相似 ⇔ A , B 有相似的特征值 p r 相同特征值相似 : A 与 B 则 A , B 具有相同的对角矩阵 , 由传递性 A ∼ B   【评注】若A,B可相似对角化,则A与B相似 \Leftrightarrow A,B有相似的特征值 \\pr相同特征值相似:A与B则A,B具有相同的对角矩阵,由传递性A\sim B \\~ 【评注】若A,B可相似对角化,AB相似A,B有相似的特征值pr相同特征值相似:ABA,B具有相同的对角矩阵,由传递性AB 
相似对角化的 充要 条件 n 阶矩阵 A 可相似对角化 ⇔ A 有 n 个线性无关的特征向量 ⇔ k 重 特征值有 k 个线性无关的特征向量(刚好 k 个) ( 设 λ i 为 k i 重 , n − r ( A − λ i E ) = k i ⇔ A 可相似对角化 , 反之 n − r ( A − λ i E ) < k i ⇔ A 不能相似对角化 )   相似对角化的\blue{充要}条件\\n阶矩阵A可相似对角化 \\ \Leftrightarrow A有n个线性无关的特征向量\\ \Leftrightarrow\blue{k重}特征值有k个线性无关的特征向量(刚好k个)\\(设\lambda_i为k_i重, n-r(A-\lambda_iE)=k_i\Leftrightarrow A可相似对角化 ,反之n-r(A-\lambda_iE)<k_i\Leftrightarrow A不能相似对角化) \\~ 相似对角化的充要条件n阶矩阵A可相似对角化An个线性无关的特征向量k特征值有k个线性无关的特征向量(刚好k个)(λiki,nr(AλiE)=kiA可相似对角化,反之nr(AλiE)<kiA不能相似对角化) 
相似对角化的充分条件 ( 1 ) A 有 n 个不同特征值(不同特征值线性无关) ( 2 ) A 有实对称矩阵( A T = A ) 【评注】若 A (前提)可相似对角化 , 特别的 A 为实对称矩阵,则 r ( A ) 等于非零特征值的个数   相似对角化的充分条件 \\(1)A有n个不同特征值 (不同特征值线性无关)\\(2)A有实对称矩阵(A^T=A) \\【评注】若A(前提)可相似对角化,特别的A为实对称矩阵,则r(A)等于非零特征值的个数 \\~ 相似对角化的充分条件1An个不同特征值(不同特征值线性无关)2A有实对称矩阵(AT=A【评注】若A(前提)可相似对角化,特别的A为实对称矩阵,则r(A)等于非零特征值的个数 

实对称矩阵

实对称矩阵的性质 ( 1 )特征值均为实数 ( 2 )不同特征值的特征向量正交 ( 3 ) k 重特征值有 k 个线性无关的特征向量 ( 4 ) A 可正交相似对角化,即存在正交矩阵 Q ( Q Q T = E , Q − 1 = Q T ),使得 Q − 1 A Q = Q T A Q = Λ = ∣ λ 1 λ 2 ⋱ λ n ∣   实对称矩阵的性质 \\ (1)特征值均为实数\\ (2)不同特征值的特征向量正交\\ (3)k重特征值有k个线性无关的特征向量\\ (4)A可正交相似对角化,即存在正交矩阵Q(QQ^T=E,Q^{-1}=Q^T),使得\\Q^{-1}AQ=Q^TAQ=\Lambda=\begin{vmatrix} \lambda_1&&& \\ &\lambda_2&& \\ &&\ddots& \\ &&&\lambda_n \\ \end{vmatrix} \\~ 实对称矩阵的性质1)特征值均为实数2)不同特征值的特征向量正交3k重特征值有k个线性无关的特征向量4A可正交相似对角化,即存在正交矩阵QQQT=E,Q1=QT),使得Q1AQ=QTAQ=Λ= λ1λ2λn  

正交矩阵的求法 ( 1 )求 A 的 n 个特征值 λ 1 , λ 2 , . . . , λ n ( 2 )求 A 的 n 个线性无关的特征向量 α 1 , α 2 , . . . , α n ( 3 )将不同特征值的特征向量分别史密斯正交化,得 γ 1 , γ 2 , . . . , γ n , 得到正交矩阵 Q = ( γ 1 , γ 2 , . . . , γ n )   正交矩阵的求法 \\ (1)求A的n个特征值\lambda_1,\lambda_2,...,\lambda_n \\ (2)求A的n个线性无关的特征向量\alpha_1,\alpha_2,...,\alpha_n \\ (3)将不同特征值的特征向量分别史密斯正交化,得\gamma_1, \gamma_2,...,\gamma_n,得到正交矩阵Q=(\gamma_1, \gamma_2,...,\gamma_n) \\~ 正交矩阵的求法1)求An个特征值λ1,λ2,...,λn2)求An个线性无关的特征向量α1,α2,...,αn3)将不同特征值的特征向量分别史密斯正交化,得γ1,γ2,...,γn,得到正交矩阵Q=(γ1,γ2,...,γn) 
实对称矩阵分解定理【强化】 设 A 为 n 阶实矩阵 , γ 1 , γ 2 , . . . , γ n 为矩阵 A 分别属于特征值 λ 1 , λ 2 , . . . , λ n 的单位正交的特征向量 , 则 A = λ 1 γ 1 γ 1 T + λ 2 γ 2 γ 2 T + . . . + λ n γ n γ n T . 特别的,若 r ( A ) = 1 , 则 A = t r ( A ) γ 1 γ 1 T 实对称矩阵分解定理【强化】\\设A为n阶实矩阵,\gamma_1, \gamma_2,...,\gamma_n为矩阵A分别属于特征值\lambda_1,\lambda_2,...,\lambda_n的单位正交的特征向量,则A=\lambda_1\gamma_1\gamma_1^T+\lambda_2\gamma_2\gamma_2^T+...+\lambda_n\gamma_n\gamma_n^T.特别的,若r(A)=1,则A=tr(A)\gamma_1\gamma_1^T 实对称矩阵分解定理【强化】An阶实矩阵,γ1,γ2,...,γn为矩阵A分别属于特征值λ1,λ2,...,λn的单位正交的特征向量,A=λ1γ1γ1T+λ2γ2γ2T+...+λnγnγnT.特别的,若r(A)=1,A=tr(A)γ1γ1T

二次型

二次型与标准型

二次型的定义:含有 n 个变量 x 1 , x 2 , . . . , x n 的二次齐次函数 f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + a 22 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a 1 n x 1 x n + ⋯ + 2 a n − 1 , n x n − 1 x n 称为二次型,记作 f = x T A x , 其中 x = ( x 1 , x 2 , . . . , x n ) T , A = ( a i j ) 为实对称矩阵,称 A 为二次型的矩阵,称 A 的秩为二次型的秩,记作 r ( f )   [ r ( f ) = r ( A ) ] .   【评注】二次型与是对称矩阵一一对应, 二次型的矩阵 A 的 主对角线元素为平方项的系数 , 其余元素 a j i = a i j 为交叉项 x i j 系数的一半   二次型的定义:含有n个变量x_1,x_2,...,x_n的二次齐次函数 \\f(x_1,x_2,...,x_n)=a_{11}x_1^2+a_{22}x_2^2+\dots+a_{nn}x_n^2+2a_{12}x_1x_2+2a_{13}x_1x_3+\dots+2a_{1n}x_1x_n+\dots+2a_{n-1,n}x_{n-1}x_n称为二次型,记作f=x^TAx,其中x=(x_1,x_2,...,x_n)^T,A=(a_{ij})为实对称矩阵,称A为二次型的矩阵,称A的秩为二次型的秩,记作r(f)~[r(f)=r(A)] .\\~\\【评注】二次型与是对称矩阵一一对应,\\二次型的矩阵A的\green{主对角线元素为平方项的系数},\green{其余元素}a_{ji}=a_{ij}为交叉项x_{ij}\green{系数的一半} \\~ 二次型的定义:含有n个变量x1,x2,...,xn的二次齐次函数f(x1,x2,...,xn)=a11x12+a22x22++annxn2+2a12x1x2+2a13x1x3++2a1nx1xn++2an1,nxn1xn称为二次型,记作f=xTAx,其中x=(x1,x2,...,xn)T,A=(aij)为实对称矩阵,称A为二次型的矩阵,称A的秩为二次型的秩,记作r(f) [r(f)=r(A)]. 【评注】二次型与是对称矩阵一一对应,二次型的矩阵A主对角线元素为平方项的系数其余元素aji=aij为交叉项xij系数的一半 

标准型的定义:只含有平分项的二次型,即 f = d 1 y 1 2 + d 2 y 2 2 + ⋯ + d n y n 2 , 称为二次型的标准型   标准型的定义:只含有平分项的二次型,即f=d_1y_1^2+d_2y_2^2+\dots+d_ny_n^2,称为二次型的标准型\\ \\~ 标准型的定义:只含有平分项的二次型,即f=d1y12+d2y22++dnyn2,称为二次型的标准型 

规范型 x i j 2 的系数为 ± 1 或 0 规范型x_{ij}^2的系数为\pm 1或0 规范型xij2的系数为±10

合同矩阵

合同的定义:设 A , B 为 n 阶 实对称矩阵 (大前提) , 若存在 n 阶可逆矩阵 C ,使得 B = C T A C ,则称 A 与 B 为合同矩阵   合同的定义:设A,B为n阶\green{实对称矩阵}(大前提),若存在n阶可逆矩阵C,使得B=C^TAC,则称A与B为合同矩阵 \\~ 合同的定义:设A,Bn实对称矩阵(大前提),若存在n阶可逆矩阵C,使得B=CTAC,则称AB为合同矩阵 
合同矩阵的充要条件 n 阶实对称矩阵 A 与 B 合同 ⇔ 二次型 x T A x 与 x T B x 有相同的正、负惯性指数(正、负惯性指数超纲,即相同的正、负特征值个数) ⇔ x T A x 与 x T B x 有相同的正、负特征值个数   合同矩阵的充要条件\\ n阶实对称矩阵A与B合同 \\ \Leftrightarrow 二次型x^TAx与x^TBx有相同的正、负惯性指数(正、负惯性指数超纲,即相同的正、负特征值个数) \\ \Leftrightarrow x^TAx与x^TBx\blue{有相同的正、负特征值个数}\\~ 合同矩阵的充要条件n阶实对称矩阵AB合同二次型xTAxxTBx有相同的正、负惯性指数(正、负惯性指数超纲,即相同的正、负特征值个数)xTAxxTBx有相同的正、负特征值个数 

正定二次型与正定矩阵

正定的定义:设 n 元二次型 f = x T A x , 若对任意的 x ≠ 0 , 有 x T A x > 0 , 则称 f 为正定二次型 , 称是对称矩阵 A 为正定矩阵   正定的定义:设n元二次型f=x^TAx,若对任意的x\ne 0,有x^TAx>0,则称f为正定二次型,称是对称矩阵A为正定矩阵\\~ 正定的定义:设n元二次型f=xTAx,若对任意的x=0,xTAx>0,则称f为正定二次型,称是对称矩阵A为正定矩阵 
正定的充要条件 n 元二次型 f = x T A x 正定 ⇔ f 的正惯性指数为 n ( 正特征值个数为 n ) ⇔ A 与 E 合同,即存在可逆矩阵 C ,使得 C T A C = E ⇔ A 的特征值均大于零 ⇔ A 的顺序主子式均大于零( k 阶顺序主子式:前 k 行前 k 列 ( 理解为前缀子式 ) )   正定的充要条件 \\n元二次型f=x^TAx正定\\ \Leftrightarrow f的正惯性指数为n(正特征值个数为n) \\ \Leftrightarrow A与E合同,即存在可逆矩阵C,使得C^TAC=E \\ \Leftrightarrow A的特征值均大于零 \\ \Leftrightarrow A的顺序主子式均大于零(k阶顺序主子式:前k行前k列(理解为前缀子式)) \\~ 正定的充要条件n元二次型f=xTAx正定f的正惯性指数为n(正特征值个数为n)AE合同,即存在可逆矩阵C,使得CTAC=EA的特征值均大于零A的顺序主子式均大于零(k阶顺序主子式:前k行前k(理解为前缀子式) 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

violet~evergarden

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值