大家好,我是程序员爱码士。
今天给大家分享一个牛逼的 python 库:feature_engine!GitHub 地址为:
https://github.com/feature-engine/feature_engine
一、Feature-engine 库简介
Feature-engine 是一个强大的 Python 库,专注于简化数据预处理和特征工程的复杂性。它为数据科学家和机器学习工程师提供了一套灵活而高效的工具,以处理和优化数据集中的特征。该库旨在降低数据准备的难度,使用户能够更轻松地构建可靠的机器学习模型。
二、Feature-engine 库的特点
Feature-engine库包含各种功能,包括缺失值处理、异常值检测和处理、变量转换、分箱等。以下是一些 Feature-engine 库提供的常见功能:
- 缺失值处理: 提供了多种方法来处理缺失值,包括删除缺失值、用平均值、中位数或指定值填充缺失值等。
- 异常值处理: 包括识别和处理异常值的功能,可以选择删除、替换或转换异常值。
- 变量转换: 提供了对数变换、指数变换、幂变换等功能,以改变变量的分布形状。
- 分箱: 支持等频分箱、等宽分箱、K均值分箱等方法,用于将连续变量分成离散的箱子。
- 标签编码和独热编码: 用于将分类变量转换为数字形式的编码。
- 时间变量工程: 提供了处理日期和时间变量的功能,包括提取年份、季节、星期等。
三、Feature-engine库的安装
要安装Feature-engine库,可以使用以下命令:
pip install feature-engine
安装完成后,你就可以在Python中引入Feature-engine并开始享受其强大的功能。
四、Feature-engine库实际应用
例子1:缺失值处理
from feature_engine import preprocessing as pp
# 创建一个SimpleImputer实例来处理缺失值
imputer = pp.SimpleImputer(strategy='mean')
# 使用fit_transform方法来处理数据集中的缺失值
X_train = imputer.fit_transform(X_train)
例子2:异常值处理
from feature_engine import preprocessing as pp
# 创建一个Winsorizer实例来处理异常值
winsorizer = pp.Winsorizer(capping_method='iqr', tail='both', fold=1.5)
# 使用fit_transform方法来处理数据集中的异常值
X_train = winsorizer.fit_transform(X_train)
例子3:特征分箱
from feature_engine import preprocessing as pp
# 创建一个EqualFrequencyDiscretiser实例进行等频分箱
discretiser = pp.EqualFrequencyDiscretiser(q=5, variables=['age', 'income'])
# 使用fit_transform方法来对指定变量进行分箱
X_train = discretiser.fit_transform(X_train)
这三个例子展示了Feature-engine库在不同场景下的应用,从而提高数据质量,为机器学习模型的构建奠定坚实的基础。
以上就是“feature_engine,一个牛逼的 python 库”的全部内容,希望对你有所帮助。
关于Python技术储备
学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
三、Python视频合集
观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
四、实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
五、Python练习题
检查学习结果。
六、面试资料
我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
最后祝大家天天进步!!
上面这份完整版的Python全套学习资料已经上传至CSDN官方,朋友如果需要可以直接微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。