Stable diffusion模型分几种?一文详解,入门必看!

在Stable Diffusion中,模型并不只有一种,不同插件有不同的模型,分别作用于不同的功能。今天就带大家一起来学习一下~

01

大模型

也就是stable diffusion模型,在默认界面中,它位于web页面的左上角,下拉列表对应的模型:

可以理解为绘画风格集合,SD需要大模型来规定它生成的图片风格,大模型是必选模型,你必须选择一个大模型才能开始生成工作。

如何获取?

这部分模型可以通过在各个模型网站下载,如果有代理可以前往civitai.com ,也叫做C站,以及huggingface.co 叫做抱脸。

如果没有代理,可以前往 liblib.ai 下载,但是需要注意的是,这些网站上通常是包括多种类型的模型,并不是所有模型都是用于这里的, 你需要选择 checkpoint类型,文件尺寸大于等于1.8G的,通常是大模型。

大模型的放置位置在整合包根目录下的 \models\Stable-diffusion\ 目录内,可以通过建立下级目录的方式进行分类,方便管理。

下载的新模型放置好之后,可以直接点击网页上下拉列表旁边的刷新按钮,直接加载。当然,也可以通过关闭页面并重启控制台来重新加载。

02

LoRA

在默认界面中,SD1.6以上的版本,lora显示在生成标签的最右侧:

lora是可选模型,即便没有lora,也可以正常生成图像。

lora模型的文件位置在根目录\models\Lora,下载对应的模型放入即可,下载网站跟上面的大模型是相同的几个网站,只是类型要选lora类型。

重复一遍,大模型的类型通常是checkpoint,而lora的类型通常就是lora。这里说的类型不是指下载下来的文件类型,而是网站对于模型的分类,这一点一定要记住。

lora和大模型以及下面说的嵌入式模型,他们的文件后缀都是相同的,光凭借后缀是无法区分的,你必须在下载每个模型的时候确定它属于什么,再放到对应目录,而不是一股脑下载完才开始挪。

lora是在大模型基础上进行进一步修改的算法,一般是比如特定人物lora或者是调整色彩饱和度之类的专门的作用。

lora的调用方式很简单,如果是你自己的lora,你可以通过点击lora卡片的方式,自动调用lora,会在你的提示词区域自动生成一个带有尖括号的特殊词组,例如:

关于lora的进一步使用,以及权重的相关解释,请前往B站或其它平台,另行搜索相关教程视频了解。

03

嵌入式

它通常是作用于反提示词(负面提示词)的,经典的常用模型包括EasyNegative, negative_hand 之类的。它的位置在生成标签旁边:

使用方式跟lora一样,点击卡片就可以使用了,会自动出现在反向提示词内。当然你也可以手动输入或复制对应的触发词(通常是文件名)。

嵌入式模型的文件位置在 根目录\embeddings ,下载对应的嵌入式模型放入即可。

04

controlnet模型

这是插件 controlnet 需要使用模型。它在界面上位于生成标签内,如果你安装了这个插件的话。目前秋叶整合包应该是初始就带了controlnet插件:

通过点击右方的三角箭头,展开controlnet设置,其中有一行 预处理器 和 模型 的下拉选择,我们这里说到的模型就是特指这里的controlnet模型:

确切地说,它的完整名称应该叫 controlnet专用模型。

在这个界面中,“预处理器”对应的是

根目录\extensions\sd-webui-controlnet\annotator\downloads

这个位置,但这里比较复杂,你需要仔细看相关教程放好对应的文件夹和文件。

“模型”的下拉菜单,对应的是 根目录\models\ControlNet 这个位置,或者是 \extensions\sd-webui-controlnet\models 这个目录,这两个目录都可以生效,系统会自动从这两个目录中寻找你放入的模型进行加载。

总的来说,controlnet一个新的算法它包含两部分,一个是预处理器,一个是模型,两者缺一不可。

对于controlnet模型的基础知识就介绍到这,controlnet因为是一个非常经典的插件,后续会带大家详细了解,记得关注我呦~

写在最后

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
  • 8
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Stable Diffusion 是一种基于扩散模型的生成式人工智能技术,通常用于文本和图像内容的创造,尤其是高质量的自然语言描述和图像合成。以下是几种常见的 Stable Diffusion 模型: 1. **Diffusion Probabilistic Model (DPM)**: 这种模型的核心是一个概率过程,通过逐步增加噪声来将原始信号转化为最终的随机输出。在 Stable Diffusion 中,DPM 可能是指 UNet 或类似结构的解码器网络,用于从噪声样本恢复原始内容。 2. **Latent Diffusion Model (LDM)**: LDM 是对 DPM 的改进版本,它的工作原理是在潜在空间中进行扩散,使得模型能够更好地控制生成的内容并提高多样性。 3. **CLIP-guided Diffusion**: 结合了 CLIP( Contrastive Language-Image Pretraining)这样的预训练模型,这种变体允许用户通过文本提示指导生成的过程,提供更精确的指引。 4. **InstructGPT**: 类似于 DALL-E 2,它是基于类似架构但针对特定指令处理优化的模型,能够在给定上下文中生成相关的高质量内容。 5. **GLIDE**: 由 Stability AI 公司开发的一个知名模型,它擅长结合文本提示创建令人信服的图像,并支持更复杂的设计和插图任务。 6. **Chaos:** Facebook 的另一个项目,它也利用了类似的技术,提供了更强的创意灵活性和多样性。 每种模型都有其特点和应用场景,用户可以根据具体需求选择最适合的模型。对于更详细的信息或最新进展,建议查阅最新的研究论文和官方文档。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值