comfyui工作流,动漫转真人,效果炸裂!(附工作流)

工作流作者:Datou

工作流和作者主页我放文末!

在数字媒体制作领域,将动漫风格的图像转换为接近真人风格的视觉效果一直是一个具有挑战性的任务。最近,ComfyUI 推出了一套高级工具和节点系统,极大地简化了这一过程。本文将详细介绍这一工作流的各个组成部分以及其实用性。

工作流核心节点简介

工作流的核心以“BRIA_RMBG_ModelLoader_Zho”和“BRIA_RMBG_Zo”为首,这两个节点专注于模型加载和背景去除,为后续的图像处理打下基础。紧接着,使用“图像比较器”来精确对比原始动漫图像与处理后的效果,确保转换的自然度和准确性。

注意事项与自定义节点

在转换过程中,有一系列自定义节点,如“CM_FloatToInt”和“VAE编码”,它们处理图像的数学转换和变量自编码过程。这些高度定制的节点提供了强大的灵活性,使用户能够根据特定需求调整图像处理参数。

ComfyUI的创新组件

ComfyUI的界面组件也为用户提供了极大的便利。例如,“预览图像”节点允许用户即时查看效果,而“CheckpointLoaderSimple”则简化了模型训练过程中的数据管理。“ControlNetLoader”和“ControlNet应用”则是进行深度学习控制和应用的关键节点,它们确保了转换过程的高度精确和个性化。

效率与兼容性

在提升工作流效率方面,ComfyUI 2.0+引入了如“图像叠加”这样的效率节点,这些节点专为快速处理和优化大量图像设计。同时,“WAS节点套件”中的“图像大小到数字”节点,提供了快速的图像尺寸调整功能,进一步增强了工作流的兼容性和灵活性。

ComfyUI的动漫转真人工作流不仅展示了强大的技术能力,也提供了前所未有的用户体验。通过这套工具,创作者可以更自由地将动漫艺术与现实世界视觉风格相融合,为影视制作、游戏设计和其他数字媒体项目带来更多可能性。这种技术的发展不仅为专业人士提供了便利,也为广大爱好者打开了一扇探索数字艺术新颖方式的大门。

作者页:https://openart.ai/workflows/datou/anime-2-movie/lNZElhA85DlfVpagkk7C
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

<think>嗯,用户想了解如何在ComfyUI中编写线稿效果图的工作流节点。首先,我需要回忆一下ComfyUI的基本结构和节点系统。根据引用[3],ComfyUI的上手门槛较高,需要对Stable Diffusion原理有一定了解。所以,我需要先解释清楚节点工作流的基本概念。 接下来,用户需要具体的步骤,可能包括安装必要的插件和模型。引用[4]提到了一些核心节点和检查点,比如ComfyUI-Inference-Core-Nodes和majicMIX realistic/v7模型。这些应该是构建工作流的关键组件。可能需要指导用户安装这些插件和模型,并确保它们正确加载。 然后,线稿效果图通常涉及ControlNet的应用,用于处理线稿作为条件输入。用户可能不知道如何在ComfyUI中配置ControlNet节点,需要详细说明如何连接线稿图像到ControlNet,并设置预处理器和模型。 另外,引用[5]提到了实战案例,可能包含具体的工作流示例。或许可以建议用户参考这些案例,或者分步构建节点流程,包括加载模型、输入线稿、设置生成参数等步骤。 还需要注意可能的问题,比如节点连接错误或模型未正确加载,这时候需要指导用户检查插件安装和路径设置。引用[3]提到手动安装可能需要注意目录结构,这也是需要注意的地方。 最后,生成相关问题,比如优化生成效果或调整风格,可以引导用户进一步探索Lora模型或参数调整,如引用[4]中的Miao girl costume/v1.0,可能用于特定风格的调整。 总之,回答需要结构清晰,分步骤讲解,引用相关资源,并预见到用户可能遇到的困难,提供解决方案。同时,确保使用正确的中文术语和LaTeX格式,但用户这里的问题可能不需要数学公式,所以可能不需要太多LaTeX,不过如果有参数设置部分可能需要用行内公式,比如调整权重时的数值范围。</think>### ComfyUI线稿效果工作流节点编写方法 在ComfyUI中实现线稿效果图的核心是**控制生成条件**和**节点逻辑编排**,以下是具体步骤: --- #### 一、基础环境准备 1. **安装ControlNet插件** - 通过Manager安装`ComfyUI-ControlNet`,确保包含`lineart`预处理器[^4] - 验证安装:在节点库中搜索`ControlNetLoader`和`ControlNetApply`节点 2. **准备模型资源** - 检查点模型:推荐使用`majicMIX realistic/v7`实现真实感渲染 - LoRA模型:添加`Miao girl costume/v1.0`可增强服饰细节 - 线稿预处理器:下载`control_v11p_sd15_lineart.pth`模型文件 --- #### 二、核心节点配置流程 ```python # 伪代码结构展示 [加载检查点] -> [CLIP文本编码] ↘ [上传线稿图] -> [ControlNet预处理] -> [ControlNetApply] ↗ [空潜变量生成] -> [K采样器] -> [VAE解码] -> [输出图像] ``` 1. **控制流搭建** - 使用`ControlNetLoader`加载线稿模型: ```python controlnet = ControlNetLoader(control_net_name="control_v11p_sd15_lineart.pth") ``` - 配置预处理参数: $$ \text{预处理强度}=1.0,\quad \text{开始控制步长}=0.0,\quad \text{结束控制步长}=1.0 $$ 2. **采样器参数设置** - 在`KSampler`节点中配置: ```python steps=20, cfg_scale=7.5, sampler_name="dpmpp_2m", scheduler="normal" ``` --- #### 三、高级优化技巧 1. **双ControlNet叠加** - 并行添加`lineart`和`softedge`控制网络,提升轮廓保持能力[^5] - 使用`cg-use-everywhere`节点实现多条件融合 2. **分层渲染策略** ```mermaid graph LR A[粗粒度生成] --> B[局部重绘] --> C[超分辨率放大] ``` 通过`Image Scale to Side`节点实现4倍分辨率提升[^1] --- #### 四、常见问题排查 1. **线稿控制失效** - 检查预处理器是否匹配模型类型 - 调整`ControlNet权重`参数(推荐0.7-1.2范围) 2. **图像畸变** - 在`VAE解码`前添加`Latent Upscale`节点 - 启用`HighRes.fix`插件进行分阶段渲染 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值