简介
在使用 Stable Diffusion 的时候,可以选择别人训练好的 Lora,那么如何训练自己的 Lora呢?
本篇文章介绍了如何训练Lora,如何筛选模型,如何在 Stable Diffusion 中使用。
闲话不多说,直接实际操作吧。
首先获取Lora的代码
github
git clone --recurse-submodules https://github.com/Akegarasu/lora-scripts
如果发现子包没下载,可以再更新子包
git submodule update --init --recursive
# Windows环境配置
这里 github 建议使用Python 3.10.8的环境,但是我的电脑已经配置了 python,不是Python 3.10.8的怎么办呢?
我的电脑就不是Python 3.10.8的环境,而 github 建议用Python 3.10.8,那么我们可以不用卸载我们原有的环境,可以用 conda
来配置多环境,如果不会用,可以网上搜索,或者也可以关注公众号,把问题发送给博主。
conda create -n lora_train python=3.10.8
安装依赖包
运行 install.ps1
将自动安装必要的包。
准备训练数据
这里需要清晰的人像照片,这里我用了20张,当然图片越多,AI 学习的效果会好些。
图片准备完毕后,需要对图片进行统一的处理,我们可以用 Stable Diffusion 进行统一处理。
图片需要处理成一样尺寸的,尺寸的大小可以用512x768或者512x640或者用512x512尺寸的,注意要是64的倍数
下面我们来对图片进行统一的处理。处理方法如下。
下面是在Stable Diffusion 的面板中进行操作,下图画圈的地方要进行操作,最下面要勾选上裁切,以及生成信息
素材生成结果
全部剪切为512x768,并生成了tag信息存在了txt文件下
新建文件夹train,把图片拷贝到该文件夹下
并起一个文件夹名字为20_train,这里的20是有必要的,是每轮20步训练
为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
一、ComfyUI配置指南
- 报错指南
- 环境配置
- 脚本更新
- 后记
- …
二、ComfyUI基础入门
- 软件安装篇
- 插件安装篇
- …
三、 ComfyUI工作流节点/底层逻辑详解
- ComfyUI 基础概念理解
- Stable diffusion 工作原理
- 工作流底层逻辑
- 必备插件补全
- …
四、ComfyUI节点技巧进阶/多模型串联
- 节点进阶详解
- 提词技巧精通
- 多模型节点串联
- …
五、ComfyUI遮罩修改重绘/Inpenting模块详解
- 图像分辨率
- 姿势
- …
六、ComfyUI超实用SDXL工作流手把手搭建
- Refined模型
- SDXL风格化提示词
- SDXL工作流搭建
- …
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取