Stable Diffusion 指定模型,Lora 训练全流程

简介

在使用 Stable Diffusion 的时候,可以选择别人训练好的 Lora,那么如何训练自己的 Lora呢?
本篇文章介绍了如何训练Lora,如何筛选模型,如何在 Stable Diffusion 中使用。

闲话不多说,直接实际操作吧。

首先获取Lora的代码

github

git clone --recurse-submodules https://github.com/Akegarasu/lora-scripts

如果发现子包没下载,可以再更新子包

git submodule update --init --recursive

# Windows环境配置

这里 github 建议使用Python 3.10.8的环境,但是我的电脑已经配置了 python,不是Python 3.10.8的怎么办呢?

我的电脑就不是Python 3.10.8的环境,而 github 建议用Python 3.10.8,那么我们可以不用卸载我们原有的环境,可以用 conda
来配置多环境,如果不会用,可以网上搜索,或者也可以关注公众号,把问题发送给博主​。

conda create -n lora_train python=3.10.8

安装依赖包

运行 install.ps1将自动安装必要的包。

image.png

准备训练数据

这里需要清晰的人像照片,这里我用了20张,当然图片越多,AI 学习的效果会好些。

图片准备完毕后,需要对图片进行统一的处理,我们可以用 Stable Diffusion 进行统一处理。

图片需要处理成一样尺寸的,尺寸的大小可以用512x768或者512x640或者用512x512尺寸的,注意要是64的倍数

下面我们来对图片进行统一的处理。处理方法如下。

下面是在Stable Diffusion 的面板中进行操作,下图画圈的地方要进行操作,最下面要勾选上裁切,以及生成信息

image.png

素材生成结果

全部剪切为512x768,并生成了tag信息存在了txt文件下

image.png

新建文件夹train,把图片拷贝到该文件夹下

并起一个文件夹名字为20_train,这里的20是有必要的,是每轮20步训练

image.png

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取
在这里插入图片描述

一、ComfyUI配置指南

  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门

  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解

  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联

  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解

  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建

  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值